| use crate::ast::{AngleBracketedArgs, ParenthesizedArgs, AttrStyle, BareFnTy}; |
| use crate::ast::{GenericBound, TraitBoundModifier}; |
| use crate::ast::Unsafety; |
| use crate::ast::{Mod, AnonConst, Arg, Arm, Guard, Attribute, BindingMode, TraitItemKind}; |
| use crate::ast::Block; |
| use crate::ast::{BlockCheckMode, CaptureBy, Movability}; |
| use crate::ast::{Constness, Crate}; |
| use crate::ast::Defaultness; |
| use crate::ast::EnumDef; |
| use crate::ast::{Expr, ExprKind, RangeLimits}; |
| use crate::ast::{Field, FnDecl, FnHeader}; |
| use crate::ast::{ForeignItem, ForeignItemKind, FunctionRetTy}; |
| use crate::ast::{GenericParam, GenericParamKind}; |
| use crate::ast::GenericArg; |
| use crate::ast::{Ident, ImplItem, IsAsync, IsAuto, Item, ItemKind}; |
| use crate::ast::{Label, Lifetime, Lit, LitKind}; |
| use crate::ast::Local; |
| use crate::ast::MacStmtStyle; |
| use crate::ast::{Mac, Mac_, MacDelimiter}; |
| use crate::ast::{MutTy, Mutability}; |
| use crate::ast::{Pat, PatKind, PathSegment}; |
| use crate::ast::{PolyTraitRef, QSelf}; |
| use crate::ast::{Stmt, StmtKind}; |
| use crate::ast::{VariantData, StructField}; |
| use crate::ast::StrStyle; |
| use crate::ast::SelfKind; |
| use crate::ast::{TraitItem, TraitRef, TraitObjectSyntax}; |
| use crate::ast::{Ty, TyKind, TypeBinding, GenericBounds}; |
| use crate::ast::{Visibility, VisibilityKind, WhereClause, CrateSugar}; |
| use crate::ast::{UseTree, UseTreeKind}; |
| use crate::ast::{BinOpKind, UnOp}; |
| use crate::ast::{RangeEnd, RangeSyntax}; |
| use crate::{ast, attr}; |
| use crate::ext::base::DummyResult; |
| use crate::source_map::{self, SourceMap, Spanned, respan}; |
| use crate::parse::{self, SeqSep, classify, token}; |
| use crate::parse::lexer::{TokenAndSpan, UnmatchedBrace}; |
| use crate::parse::lexer::comments::{doc_comment_style, strip_doc_comment_decoration}; |
| use crate::parse::token::DelimToken; |
| use crate::parse::{new_sub_parser_from_file, ParseSess, Directory, DirectoryOwnership}; |
| use crate::util::parser::{AssocOp, Fixity}; |
| use crate::print::pprust; |
| use crate::ptr::P; |
| use crate::parse::PResult; |
| use crate::ThinVec; |
| use crate::tokenstream::{self, DelimSpan, TokenTree, TokenStream, TreeAndJoint}; |
| use crate::symbol::{Symbol, keywords}; |
| |
| use errors::{Applicability, DiagnosticBuilder, DiagnosticId}; |
| use rustc_target::spec::abi::{self, Abi}; |
| use syntax_pos::{Span, MultiSpan, BytePos, FileName}; |
| use log::{debug, trace}; |
| |
| use std::borrow::Cow; |
| use std::cmp; |
| use std::mem; |
| use std::path::{self, Path, PathBuf}; |
| use std::slice; |
| |
| #[derive(Debug)] |
| /// Whether the type alias or associated type is a concrete type or an existential type |
| pub enum AliasKind { |
| /// Just a new name for the same type |
| Weak(P<Ty>), |
| /// Only trait impls of the type will be usable, not the actual type itself |
| Existential(GenericBounds), |
| } |
| |
| bitflags::bitflags! { |
| struct Restrictions: u8 { |
| const STMT_EXPR = 1 << 0; |
| const NO_STRUCT_LITERAL = 1 << 1; |
| } |
| } |
| |
| type ItemInfo = (Ident, ItemKind, Option<Vec<Attribute>>); |
| |
| /// Specifies how to parse a path. |
| #[derive(Copy, Clone, PartialEq)] |
| pub enum PathStyle { |
| /// In some contexts, notably in expressions, paths with generic arguments are ambiguous |
| /// with something else. For example, in expressions `segment < ....` can be interpreted |
| /// as a comparison and `segment ( ....` can be interpreted as a function call. |
| /// In all such contexts the non-path interpretation is preferred by default for practical |
| /// reasons, but the path interpretation can be forced by the disambiguator `::`, e.g. |
| /// `x<y>` - comparisons, `x::<y>` - unambiguously a path. |
| Expr, |
| /// In other contexts, notably in types, no ambiguity exists and paths can be written |
| /// without the disambiguator, e.g., `x<y>` - unambiguously a path. |
| /// Paths with disambiguators are still accepted, `x::<Y>` - unambiguously a path too. |
| Type, |
| /// A path with generic arguments disallowed, e.g., `foo::bar::Baz`, used in imports, |
| /// visibilities or attributes. |
| /// Technically, this variant is unnecessary and e.g., `Expr` can be used instead |
| /// (paths in "mod" contexts have to be checked later for absence of generic arguments |
| /// anyway, due to macros), but it is used to avoid weird suggestions about expected |
| /// tokens when something goes wrong. |
| Mod, |
| } |
| |
| #[derive(Clone, Copy, PartialEq, Debug)] |
| enum SemiColonMode { |
| Break, |
| Ignore, |
| Comma, |
| } |
| |
| #[derive(Clone, Copy, PartialEq, Debug)] |
| enum BlockMode { |
| Break, |
| Ignore, |
| } |
| |
| /// Possibly accepts an `token::Interpolated` expression (a pre-parsed expression |
| /// dropped into the token stream, which happens while parsing the result of |
| /// macro expansion). Placement of these is not as complex as I feared it would |
| /// be. The important thing is to make sure that lookahead doesn't balk at |
| /// `token::Interpolated` tokens. |
| macro_rules! maybe_whole_expr { |
| ($p:expr) => { |
| if let token::Interpolated(nt) = $p.token.clone() { |
| match *nt { |
| token::NtExpr(ref e) | token::NtLiteral(ref e) => { |
| $p.bump(); |
| return Ok((*e).clone()); |
| } |
| token::NtPath(ref path) => { |
| $p.bump(); |
| let span = $p.span; |
| let kind = ExprKind::Path(None, (*path).clone()); |
| return Ok($p.mk_expr(span, kind, ThinVec::new())); |
| } |
| token::NtBlock(ref block) => { |
| $p.bump(); |
| let span = $p.span; |
| let kind = ExprKind::Block((*block).clone(), None); |
| return Ok($p.mk_expr(span, kind, ThinVec::new())); |
| } |
| _ => {}, |
| }; |
| } |
| } |
| } |
| |
| /// As maybe_whole_expr, but for things other than expressions |
| macro_rules! maybe_whole { |
| ($p:expr, $constructor:ident, |$x:ident| $e:expr) => { |
| if let token::Interpolated(nt) = $p.token.clone() { |
| if let token::$constructor($x) = (*nt).clone() { |
| $p.bump(); |
| return Ok($e); |
| } |
| } |
| }; |
| } |
| |
| fn maybe_append(mut lhs: Vec<Attribute>, mut rhs: Option<Vec<Attribute>>) -> Vec<Attribute> { |
| if let Some(ref mut rhs) = rhs { |
| lhs.append(rhs); |
| } |
| lhs |
| } |
| |
| #[derive(Debug, Clone, Copy, PartialEq)] |
| enum PrevTokenKind { |
| DocComment, |
| Comma, |
| Plus, |
| Interpolated, |
| Eof, |
| Ident, |
| Other, |
| } |
| |
| trait RecoverQPath: Sized { |
| const PATH_STYLE: PathStyle = PathStyle::Expr; |
| fn to_ty(&self) -> Option<P<Ty>>; |
| fn to_recovered(&self, qself: Option<QSelf>, path: ast::Path) -> Self; |
| fn to_string(&self) -> String; |
| } |
| |
| impl RecoverQPath for Ty { |
| const PATH_STYLE: PathStyle = PathStyle::Type; |
| fn to_ty(&self) -> Option<P<Ty>> { |
| Some(P(self.clone())) |
| } |
| fn to_recovered(&self, qself: Option<QSelf>, path: ast::Path) -> Self { |
| Self { span: path.span, node: TyKind::Path(qself, path), id: self.id } |
| } |
| fn to_string(&self) -> String { |
| pprust::ty_to_string(self) |
| } |
| } |
| |
| impl RecoverQPath for Pat { |
| fn to_ty(&self) -> Option<P<Ty>> { |
| self.to_ty() |
| } |
| fn to_recovered(&self, qself: Option<QSelf>, path: ast::Path) -> Self { |
| Self { span: path.span, node: PatKind::Path(qself, path), id: self.id } |
| } |
| fn to_string(&self) -> String { |
| pprust::pat_to_string(self) |
| } |
| } |
| |
| impl RecoverQPath for Expr { |
| fn to_ty(&self) -> Option<P<Ty>> { |
| self.to_ty() |
| } |
| fn to_recovered(&self, qself: Option<QSelf>, path: ast::Path) -> Self { |
| Self { span: path.span, node: ExprKind::Path(qself, path), |
| id: self.id, attrs: self.attrs.clone() } |
| } |
| fn to_string(&self) -> String { |
| pprust::expr_to_string(self) |
| } |
| } |
| |
| /* ident is handled by common.rs */ |
| |
| #[derive(Clone)] |
| pub struct Parser<'a> { |
| pub sess: &'a ParseSess, |
| /// the current token: |
| pub token: token::Token, |
| /// the span of the current token: |
| pub span: Span, |
| /// the span of the previous token: |
| meta_var_span: Option<Span>, |
| pub prev_span: Span, |
| /// the previous token kind |
| prev_token_kind: PrevTokenKind, |
| restrictions: Restrictions, |
| /// Used to determine the path to externally loaded source files |
| crate directory: Directory<'a>, |
| /// Whether to parse sub-modules in other files. |
| pub recurse_into_file_modules: bool, |
| /// Name of the root module this parser originated from. If `None`, then the |
| /// name is not known. This does not change while the parser is descending |
| /// into modules, and sub-parsers have new values for this name. |
| pub root_module_name: Option<String>, |
| crate expected_tokens: Vec<TokenType>, |
| token_cursor: TokenCursor, |
| desugar_doc_comments: bool, |
| /// Whether we should configure out of line modules as we parse. |
| pub cfg_mods: bool, |
| /// This field is used to keep track of how many left angle brackets we have seen. This is |
| /// required in order to detect extra leading left angle brackets (`<` characters) and error |
| /// appropriately. |
| /// |
| /// See the comments in the `parse_path_segment` function for more details. |
| crate unmatched_angle_bracket_count: u32, |
| crate max_angle_bracket_count: u32, |
| /// List of all unclosed delimiters found by the lexer. If an entry is used for error recovery |
| /// it gets removed from here. Every entry left at the end gets emitted as an independent |
| /// error. |
| crate unclosed_delims: Vec<UnmatchedBrace>, |
| } |
| |
| |
| #[derive(Clone)] |
| struct TokenCursor { |
| frame: TokenCursorFrame, |
| stack: Vec<TokenCursorFrame>, |
| } |
| |
| #[derive(Clone)] |
| struct TokenCursorFrame { |
| delim: token::DelimToken, |
| span: DelimSpan, |
| open_delim: bool, |
| tree_cursor: tokenstream::Cursor, |
| close_delim: bool, |
| last_token: LastToken, |
| } |
| |
| /// This is used in `TokenCursorFrame` above to track tokens that are consumed |
| /// by the parser, and then that's transitively used to record the tokens that |
| /// each parse AST item is created with. |
| /// |
| /// Right now this has two states, either collecting tokens or not collecting |
| /// tokens. If we're collecting tokens we just save everything off into a local |
| /// `Vec`. This should eventually though likely save tokens from the original |
| /// token stream and just use slicing of token streams to avoid creation of a |
| /// whole new vector. |
| /// |
| /// The second state is where we're passively not recording tokens, but the last |
| /// token is still tracked for when we want to start recording tokens. This |
| /// "last token" means that when we start recording tokens we'll want to ensure |
| /// that this, the first token, is included in the output. |
| /// |
| /// You can find some more example usage of this in the `collect_tokens` method |
| /// on the parser. |
| #[derive(Clone)] |
| enum LastToken { |
| Collecting(Vec<TreeAndJoint>), |
| Was(Option<TreeAndJoint>), |
| } |
| |
| impl TokenCursorFrame { |
| fn new(sp: DelimSpan, delim: DelimToken, tts: &TokenStream) -> Self { |
| TokenCursorFrame { |
| delim: delim, |
| span: sp, |
| open_delim: delim == token::NoDelim, |
| tree_cursor: tts.clone().into_trees(), |
| close_delim: delim == token::NoDelim, |
| last_token: LastToken::Was(None), |
| } |
| } |
| } |
| |
| impl TokenCursor { |
| fn next(&mut self) -> TokenAndSpan { |
| loop { |
| let tree = if !self.frame.open_delim { |
| self.frame.open_delim = true; |
| TokenTree::open_tt(self.frame.span.open, self.frame.delim) |
| } else if let Some(tree) = self.frame.tree_cursor.next() { |
| tree |
| } else if !self.frame.close_delim { |
| self.frame.close_delim = true; |
| TokenTree::close_tt(self.frame.span.close, self.frame.delim) |
| } else if let Some(frame) = self.stack.pop() { |
| self.frame = frame; |
| continue |
| } else { |
| return TokenAndSpan { tok: token::Eof, sp: syntax_pos::DUMMY_SP } |
| }; |
| |
| match self.frame.last_token { |
| LastToken::Collecting(ref mut v) => v.push(tree.clone().into()), |
| LastToken::Was(ref mut t) => *t = Some(tree.clone().into()), |
| } |
| |
| match tree { |
| TokenTree::Token(sp, tok) => return TokenAndSpan { tok: tok, sp: sp }, |
| TokenTree::Delimited(sp, delim, tts) => { |
| let frame = TokenCursorFrame::new(sp, delim, &tts); |
| self.stack.push(mem::replace(&mut self.frame, frame)); |
| } |
| } |
| } |
| } |
| |
| fn next_desugared(&mut self) -> TokenAndSpan { |
| let (sp, name) = match self.next() { |
| TokenAndSpan { sp, tok: token::DocComment(name) } => (sp, name), |
| tok => return tok, |
| }; |
| |
| let stripped = strip_doc_comment_decoration(&name.as_str()); |
| |
| // Searches for the occurrences of `"#*` and returns the minimum number of `#`s |
| // required to wrap the text. |
| let mut num_of_hashes = 0; |
| let mut count = 0; |
| for ch in stripped.chars() { |
| count = match ch { |
| '"' => 1, |
| '#' if count > 0 => count + 1, |
| _ => 0, |
| }; |
| num_of_hashes = cmp::max(num_of_hashes, count); |
| } |
| |
| let delim_span = DelimSpan::from_single(sp); |
| let body = TokenTree::Delimited( |
| delim_span, |
| token::Bracket, |
| [TokenTree::Token(sp, token::Ident(ast::Ident::from_str("doc"), false)), |
| TokenTree::Token(sp, token::Eq), |
| TokenTree::Token(sp, token::Literal( |
| token::StrRaw(Symbol::intern(&stripped), num_of_hashes), None)) |
| ] |
| .iter().cloned().collect::<TokenStream>().into(), |
| ); |
| |
| self.stack.push(mem::replace(&mut self.frame, TokenCursorFrame::new( |
| delim_span, |
| token::NoDelim, |
| &if doc_comment_style(&name.as_str()) == AttrStyle::Inner { |
| [TokenTree::Token(sp, token::Pound), TokenTree::Token(sp, token::Not), body] |
| .iter().cloned().collect::<TokenStream>().into() |
| } else { |
| [TokenTree::Token(sp, token::Pound), body] |
| .iter().cloned().collect::<TokenStream>().into() |
| }, |
| ))); |
| |
| self.next() |
| } |
| } |
| |
| #[derive(Clone, PartialEq)] |
| crate enum TokenType { |
| Token(token::Token), |
| Keyword(keywords::Keyword), |
| Operator, |
| Lifetime, |
| Ident, |
| Path, |
| Type, |
| Const, |
| } |
| |
| impl TokenType { |
| fn to_string(&self) -> String { |
| match *self { |
| TokenType::Token(ref t) => format!("`{}`", pprust::token_to_string(t)), |
| TokenType::Keyword(kw) => format!("`{}`", kw.name()), |
| TokenType::Operator => "an operator".to_string(), |
| TokenType::Lifetime => "lifetime".to_string(), |
| TokenType::Ident => "identifier".to_string(), |
| TokenType::Path => "path".to_string(), |
| TokenType::Type => "type".to_string(), |
| TokenType::Const => "const".to_string(), |
| } |
| } |
| } |
| |
| /// Returns `true` if `IDENT t` can start a type -- `IDENT::a::b`, `IDENT<u8, u8>`, |
| /// `IDENT<<u8 as Trait>::AssocTy>`. |
| /// |
| /// Types can also be of the form `IDENT(u8, u8) -> u8`, however this assumes |
| /// that `IDENT` is not the ident of a fn trait. |
| fn can_continue_type_after_non_fn_ident(t: &token::Token) -> bool { |
| t == &token::ModSep || t == &token::Lt || |
| t == &token::BinOp(token::Shl) |
| } |
| |
| /// Information about the path to a module. |
| pub struct ModulePath { |
| name: String, |
| path_exists: bool, |
| pub result: Result<ModulePathSuccess, Error>, |
| } |
| |
| pub struct ModulePathSuccess { |
| pub path: PathBuf, |
| pub directory_ownership: DirectoryOwnership, |
| warn: bool, |
| } |
| |
| pub enum Error { |
| FileNotFoundForModule { |
| mod_name: String, |
| default_path: String, |
| secondary_path: String, |
| dir_path: String, |
| }, |
| DuplicatePaths { |
| mod_name: String, |
| default_path: String, |
| secondary_path: String, |
| }, |
| UselessDocComment, |
| InclusiveRangeWithNoEnd, |
| } |
| |
| impl Error { |
| fn span_err<S: Into<MultiSpan>>(self, |
| sp: S, |
| handler: &errors::Handler) -> DiagnosticBuilder<'_> { |
| match self { |
| Error::FileNotFoundForModule { ref mod_name, |
| ref default_path, |
| ref secondary_path, |
| ref dir_path } => { |
| let mut err = struct_span_err!(handler, sp, E0583, |
| "file not found for module `{}`", mod_name); |
| err.help(&format!("name the file either {} or {} inside the directory \"{}\"", |
| default_path, |
| secondary_path, |
| dir_path)); |
| err |
| } |
| Error::DuplicatePaths { ref mod_name, ref default_path, ref secondary_path } => { |
| let mut err = struct_span_err!(handler, sp, E0584, |
| "file for module `{}` found at both {} and {}", |
| mod_name, |
| default_path, |
| secondary_path); |
| err.help("delete or rename one of them to remove the ambiguity"); |
| err |
| } |
| Error::UselessDocComment => { |
| let mut err = struct_span_err!(handler, sp, E0585, |
| "found a documentation comment that doesn't document anything"); |
| err.help("doc comments must come before what they document, maybe a comment was \ |
| intended with `//`?"); |
| err |
| } |
| Error::InclusiveRangeWithNoEnd => { |
| let mut err = struct_span_err!(handler, sp, E0586, |
| "inclusive range with no end"); |
| err.help("inclusive ranges must be bounded at the end (`..=b` or `a..=b`)"); |
| err |
| } |
| } |
| } |
| } |
| |
| #[derive(Debug)] |
| enum LhsExpr { |
| NotYetParsed, |
| AttributesParsed(ThinVec<Attribute>), |
| AlreadyParsed(P<Expr>), |
| } |
| |
| impl From<Option<ThinVec<Attribute>>> for LhsExpr { |
| fn from(o: Option<ThinVec<Attribute>>) -> Self { |
| if let Some(attrs) = o { |
| LhsExpr::AttributesParsed(attrs) |
| } else { |
| LhsExpr::NotYetParsed |
| } |
| } |
| } |
| |
| impl From<P<Expr>> for LhsExpr { |
| fn from(expr: P<Expr>) -> Self { |
| LhsExpr::AlreadyParsed(expr) |
| } |
| } |
| |
| /// Creates a placeholder argument. |
| fn dummy_arg(span: Span) -> Arg { |
| let ident = Ident::new(keywords::Invalid.name(), span); |
| let pat = P(Pat { |
| id: ast::DUMMY_NODE_ID, |
| node: PatKind::Ident(BindingMode::ByValue(Mutability::Immutable), ident, None), |
| span, |
| }); |
| let ty = Ty { |
| node: TyKind::Err, |
| span, |
| id: ast::DUMMY_NODE_ID |
| }; |
| Arg { ty: P(ty), pat: pat, id: ast::DUMMY_NODE_ID } |
| } |
| |
| #[derive(Copy, Clone, Debug)] |
| enum TokenExpectType { |
| Expect, |
| NoExpect, |
| } |
| |
| impl<'a> Parser<'a> { |
| pub fn new(sess: &'a ParseSess, |
| tokens: TokenStream, |
| directory: Option<Directory<'a>>, |
| recurse_into_file_modules: bool, |
| desugar_doc_comments: bool) |
| -> Self { |
| let mut parser = Parser { |
| sess, |
| token: token::Whitespace, |
| span: syntax_pos::DUMMY_SP, |
| prev_span: syntax_pos::DUMMY_SP, |
| meta_var_span: None, |
| prev_token_kind: PrevTokenKind::Other, |
| restrictions: Restrictions::empty(), |
| recurse_into_file_modules, |
| directory: Directory { |
| path: Cow::from(PathBuf::new()), |
| ownership: DirectoryOwnership::Owned { relative: None } |
| }, |
| root_module_name: None, |
| expected_tokens: Vec::new(), |
| token_cursor: TokenCursor { |
| frame: TokenCursorFrame::new( |
| DelimSpan::dummy(), |
| token::NoDelim, |
| &tokens.into(), |
| ), |
| stack: Vec::new(), |
| }, |
| desugar_doc_comments, |
| cfg_mods: true, |
| unmatched_angle_bracket_count: 0, |
| max_angle_bracket_count: 0, |
| unclosed_delims: Vec::new(), |
| }; |
| |
| let tok = parser.next_tok(); |
| parser.token = tok.tok; |
| parser.span = tok.sp; |
| |
| if let Some(directory) = directory { |
| parser.directory = directory; |
| } else if !parser.span.is_dummy() { |
| if let FileName::Real(mut path) = sess.source_map().span_to_unmapped_path(parser.span) { |
| path.pop(); |
| parser.directory.path = Cow::from(path); |
| } |
| } |
| |
| parser.process_potential_macro_variable(); |
| parser |
| } |
| |
| fn next_tok(&mut self) -> TokenAndSpan { |
| let mut next = if self.desugar_doc_comments { |
| self.token_cursor.next_desugared() |
| } else { |
| self.token_cursor.next() |
| }; |
| if next.sp.is_dummy() { |
| // Tweak the location for better diagnostics, but keep syntactic context intact. |
| next.sp = self.prev_span.with_ctxt(next.sp.ctxt()); |
| } |
| next |
| } |
| |
| /// Converts the current token to a string using `self`'s reader. |
| pub fn this_token_to_string(&self) -> String { |
| pprust::token_to_string(&self.token) |
| } |
| |
| fn token_descr(&self) -> Option<&'static str> { |
| Some(match &self.token { |
| t if t.is_special_ident() => "reserved identifier", |
| t if t.is_used_keyword() => "keyword", |
| t if t.is_unused_keyword() => "reserved keyword", |
| token::DocComment(..) => "doc comment", |
| _ => return None, |
| }) |
| } |
| |
| fn this_token_descr(&self) -> String { |
| if let Some(prefix) = self.token_descr() { |
| format!("{} `{}`", prefix, self.this_token_to_string()) |
| } else { |
| format!("`{}`", self.this_token_to_string()) |
| } |
| } |
| |
| fn unexpected_last<T>(&self, t: &token::Token) -> PResult<'a, T> { |
| let token_str = pprust::token_to_string(t); |
| Err(self.span_fatal(self.prev_span, &format!("unexpected token: `{}`", token_str))) |
| } |
| |
| crate fn unexpected<T>(&mut self) -> PResult<'a, T> { |
| match self.expect_one_of(&[], &[]) { |
| Err(e) => Err(e), |
| Ok(_) => unreachable!(), |
| } |
| } |
| |
| /// Expects and consumes the token `t`. Signals an error if the next token is not `t`. |
| pub fn expect(&mut self, t: &token::Token) -> PResult<'a, bool /* recovered */> { |
| if self.expected_tokens.is_empty() { |
| if self.token == *t { |
| self.bump(); |
| Ok(false) |
| } else { |
| let token_str = pprust::token_to_string(t); |
| let this_token_str = self.this_token_descr(); |
| let mut err = self.fatal(&format!("expected `{}`, found {}", |
| token_str, |
| this_token_str)); |
| |
| let sp = if self.token == token::Token::Eof { |
| // EOF, don't want to point at the following char, but rather the last token |
| self.prev_span |
| } else { |
| self.sess.source_map().next_point(self.prev_span) |
| }; |
| let label_exp = format!("expected `{}`", token_str); |
| match self.recover_closing_delimiter(&[t.clone()], err) { |
| Err(e) => err = e, |
| Ok(recovered) => { |
| return Ok(recovered); |
| } |
| } |
| let cm = self.sess.source_map(); |
| match (cm.lookup_line(self.span.lo()), cm.lookup_line(sp.lo())) { |
| (Ok(ref a), Ok(ref b)) if a.line == b.line => { |
| // When the spans are in the same line, it means that the only content |
| // between them is whitespace, point only at the found token. |
| err.span_label(self.span, label_exp); |
| } |
| _ => { |
| err.span_label(sp, label_exp); |
| err.span_label(self.span, "unexpected token"); |
| } |
| } |
| Err(err) |
| } |
| } else { |
| self.expect_one_of(slice::from_ref(t), &[]) |
| } |
| } |
| |
| fn recover_closing_delimiter( |
| &mut self, |
| tokens: &[token::Token], |
| mut err: DiagnosticBuilder<'a>, |
| ) -> PResult<'a, bool> { |
| let mut pos = None; |
| // we want to use the last closing delim that would apply |
| for (i, unmatched) in self.unclosed_delims.iter().enumerate().rev() { |
| if tokens.contains(&token::CloseDelim(unmatched.expected_delim)) |
| && Some(self.span) > unmatched.unclosed_span |
| { |
| pos = Some(i); |
| } |
| } |
| match pos { |
| Some(pos) => { |
| // Recover and assume that the detected unclosed delimiter was meant for |
| // this location. Emit the diagnostic and act as if the delimiter was |
| // present for the parser's sake. |
| |
| // Don't attempt to recover from this unclosed delimiter more than once. |
| let unmatched = self.unclosed_delims.remove(pos); |
| let delim = TokenType::Token(token::CloseDelim(unmatched.expected_delim)); |
| |
| // We want to suggest the inclusion of the closing delimiter where it makes |
| // the most sense, which is immediately after the last token: |
| // |
| // {foo(bar {}} |
| // - ^ |
| // | | |
| // | help: `)` may belong here (FIXME: #58270) |
| // | |
| // unclosed delimiter |
| if let Some(sp) = unmatched.unclosed_span { |
| err.span_label(sp, "unclosed delimiter"); |
| } |
| err.span_suggestion_short( |
| self.sess.source_map().next_point(self.prev_span), |
| &format!("{} may belong here", delim.to_string()), |
| delim.to_string(), |
| Applicability::MaybeIncorrect, |
| ); |
| err.emit(); |
| self.expected_tokens.clear(); // reduce errors |
| Ok(true) |
| } |
| _ => Err(err), |
| } |
| } |
| |
| /// Expect next token to be edible or inedible token. If edible, |
| /// then consume it; if inedible, then return without consuming |
| /// anything. Signal a fatal error if next token is unexpected. |
| pub fn expect_one_of( |
| &mut self, |
| edible: &[token::Token], |
| inedible: &[token::Token], |
| ) -> PResult<'a, bool /* recovered */> { |
| fn tokens_to_string(tokens: &[TokenType]) -> String { |
| let mut i = tokens.iter(); |
| // This might be a sign we need a connect method on Iterator. |
| let b = i.next() |
| .map_or(String::new(), |t| t.to_string()); |
| i.enumerate().fold(b, |mut b, (i, a)| { |
| if tokens.len() > 2 && i == tokens.len() - 2 { |
| b.push_str(", or "); |
| } else if tokens.len() == 2 && i == tokens.len() - 2 { |
| b.push_str(" or "); |
| } else { |
| b.push_str(", "); |
| } |
| b.push_str(&a.to_string()); |
| b |
| }) |
| } |
| if edible.contains(&self.token) { |
| self.bump(); |
| Ok(false) |
| } else if inedible.contains(&self.token) { |
| // leave it in the input |
| Ok(false) |
| } else { |
| let mut expected = edible.iter() |
| .map(|x| TokenType::Token(x.clone())) |
| .chain(inedible.iter().map(|x| TokenType::Token(x.clone()))) |
| .chain(self.expected_tokens.iter().cloned()) |
| .collect::<Vec<_>>(); |
| expected.sort_by_cached_key(|x| x.to_string()); |
| expected.dedup(); |
| let expect = tokens_to_string(&expected[..]); |
| let actual = self.this_token_to_string(); |
| let (msg_exp, (label_sp, label_exp)) = if expected.len() > 1 { |
| let short_expect = if expected.len() > 6 { |
| format!("{} possible tokens", expected.len()) |
| } else { |
| expect.clone() |
| }; |
| (format!("expected one of {}, found `{}`", expect, actual), |
| (self.sess.source_map().next_point(self.prev_span), |
| format!("expected one of {} here", short_expect))) |
| } else if expected.is_empty() { |
| (format!("unexpected token: `{}`", actual), |
| (self.prev_span, "unexpected token after this".to_string())) |
| } else { |
| (format!("expected {}, found `{}`", expect, actual), |
| (self.sess.source_map().next_point(self.prev_span), |
| format!("expected {} here", expect))) |
| }; |
| let mut err = self.fatal(&msg_exp); |
| if self.token.is_ident_named("and") { |
| err.span_suggestion_short( |
| self.span, |
| "use `&&` instead of `and` for the boolean operator", |
| "&&".to_string(), |
| Applicability::MaybeIncorrect, |
| ); |
| } |
| if self.token.is_ident_named("or") { |
| err.span_suggestion_short( |
| self.span, |
| "use `||` instead of `or` for the boolean operator", |
| "||".to_string(), |
| Applicability::MaybeIncorrect, |
| ); |
| } |
| let sp = if self.token == token::Token::Eof { |
| // This is EOF, don't want to point at the following char, but rather the last token |
| self.prev_span |
| } else { |
| label_sp |
| }; |
| match self.recover_closing_delimiter(&expected.iter().filter_map(|tt| match tt { |
| TokenType::Token(t) => Some(t.clone()), |
| _ => None, |
| }).collect::<Vec<_>>(), err) { |
| Err(e) => err = e, |
| Ok(recovered) => { |
| return Ok(recovered); |
| } |
| } |
| |
| let cm = self.sess.source_map(); |
| match (cm.lookup_line(self.span.lo()), cm.lookup_line(sp.lo())) { |
| (Ok(ref a), Ok(ref b)) if a.line == b.line => { |
| // When the spans are in the same line, it means that the only content between |
| // them is whitespace, point at the found token in that case: |
| // |
| // X | () => { syntax error }; |
| // | ^^^^^ expected one of 8 possible tokens here |
| // |
| // instead of having: |
| // |
| // X | () => { syntax error }; |
| // | -^^^^^ unexpected token |
| // | | |
| // | expected one of 8 possible tokens here |
| err.span_label(self.span, label_exp); |
| } |
| _ if self.prev_span == syntax_pos::DUMMY_SP => { |
| // Account for macro context where the previous span might not be |
| // available to avoid incorrect output (#54841). |
| err.span_label(self.span, "unexpected token"); |
| } |
| _ => { |
| err.span_label(sp, label_exp); |
| err.span_label(self.span, "unexpected token"); |
| } |
| } |
| Err(err) |
| } |
| } |
| |
| /// Returns the span of expr, if it was not interpolated or the span of the interpolated token. |
| fn interpolated_or_expr_span(&self, |
| expr: PResult<'a, P<Expr>>) |
| -> PResult<'a, (Span, P<Expr>)> { |
| expr.map(|e| { |
| if self.prev_token_kind == PrevTokenKind::Interpolated { |
| (self.prev_span, e) |
| } else { |
| (e.span, e) |
| } |
| }) |
| } |
| |
| fn expected_ident_found(&self) -> DiagnosticBuilder<'a> { |
| let mut err = self.struct_span_err(self.span, |
| &format!("expected identifier, found {}", |
| self.this_token_descr())); |
| if let token::Ident(ident, false) = &self.token { |
| if ident.is_reserved() && !ident.is_path_segment_keyword() && |
| ident.name != keywords::Underscore.name() |
| { |
| err.span_suggestion( |
| self.span, |
| "you can escape reserved keywords to use them as identifiers", |
| format!("r#{}", ident), |
| Applicability::MaybeIncorrect, |
| ); |
| } |
| } |
| if let Some(token_descr) = self.token_descr() { |
| err.span_label(self.span, format!("expected identifier, found {}", token_descr)); |
| } else { |
| err.span_label(self.span, "expected identifier"); |
| if self.token == token::Comma && self.look_ahead(1, |t| t.is_ident()) { |
| err.span_suggestion( |
| self.span, |
| "remove this comma", |
| String::new(), |
| Applicability::MachineApplicable, |
| ); |
| } |
| } |
| err |
| } |
| |
| pub fn parse_ident(&mut self) -> PResult<'a, ast::Ident> { |
| self.parse_ident_common(true) |
| } |
| |
| fn parse_ident_common(&mut self, recover: bool) -> PResult<'a, ast::Ident> { |
| match self.token { |
| token::Ident(ident, _) => { |
| if self.token.is_reserved_ident() { |
| let mut err = self.expected_ident_found(); |
| if recover { |
| err.emit(); |
| } else { |
| return Err(err); |
| } |
| } |
| let span = self.span; |
| self.bump(); |
| Ok(Ident::new(ident.name, span)) |
| } |
| _ => { |
| Err(if self.prev_token_kind == PrevTokenKind::DocComment { |
| self.span_fatal_err(self.prev_span, Error::UselessDocComment) |
| } else { |
| self.expected_ident_found() |
| }) |
| } |
| } |
| } |
| |
| /// Checks if the next token is `tok`, and returns `true` if so. |
| /// |
| /// This method will automatically add `tok` to `expected_tokens` if `tok` is not |
| /// encountered. |
| crate fn check(&mut self, tok: &token::Token) -> bool { |
| let is_present = self.token == *tok; |
| if !is_present { self.expected_tokens.push(TokenType::Token(tok.clone())); } |
| is_present |
| } |
| |
| /// Consumes a token 'tok' if it exists. Returns whether the given token was present. |
| pub fn eat(&mut self, tok: &token::Token) -> bool { |
| let is_present = self.check(tok); |
| if is_present { self.bump() } |
| is_present |
| } |
| |
| fn check_keyword(&mut self, kw: keywords::Keyword) -> bool { |
| self.expected_tokens.push(TokenType::Keyword(kw)); |
| self.token.is_keyword(kw) |
| } |
| |
| /// If the next token is the given keyword, eats it and returns |
| /// `true`. Otherwise, returns `false`. |
| pub fn eat_keyword(&mut self, kw: keywords::Keyword) -> bool { |
| if self.check_keyword(kw) { |
| self.bump(); |
| true |
| } else { |
| false |
| } |
| } |
| |
| fn eat_keyword_noexpect(&mut self, kw: keywords::Keyword) -> bool { |
| if self.token.is_keyword(kw) { |
| self.bump(); |
| true |
| } else { |
| false |
| } |
| } |
| |
| /// If the given word is not a keyword, signals an error. |
| /// If the next token is not the given word, signals an error. |
| /// Otherwise, eats it. |
| fn expect_keyword(&mut self, kw: keywords::Keyword) -> PResult<'a, ()> { |
| if !self.eat_keyword(kw) { |
| self.unexpected() |
| } else { |
| Ok(()) |
| } |
| } |
| |
| fn check_ident(&mut self) -> bool { |
| if self.token.is_ident() { |
| true |
| } else { |
| self.expected_tokens.push(TokenType::Ident); |
| false |
| } |
| } |
| |
| fn check_path(&mut self) -> bool { |
| if self.token.is_path_start() { |
| true |
| } else { |
| self.expected_tokens.push(TokenType::Path); |
| false |
| } |
| } |
| |
| fn check_type(&mut self) -> bool { |
| if self.token.can_begin_type() { |
| true |
| } else { |
| self.expected_tokens.push(TokenType::Type); |
| false |
| } |
| } |
| |
| fn check_const_arg(&mut self) -> bool { |
| if self.token.can_begin_const_arg() { |
| true |
| } else { |
| self.expected_tokens.push(TokenType::Const); |
| false |
| } |
| } |
| |
| /// Expects and consumes a `+`. if `+=` is seen, replaces it with a `=` |
| /// and continues. If a `+` is not seen, returns `false`. |
| /// |
| /// This is used when token-splitting `+=` into `+`. |
| /// See issue #47856 for an example of when this may occur. |
| fn eat_plus(&mut self) -> bool { |
| self.expected_tokens.push(TokenType::Token(token::BinOp(token::Plus))); |
| match self.token { |
| token::BinOp(token::Plus) => { |
| self.bump(); |
| true |
| } |
| token::BinOpEq(token::Plus) => { |
| let span = self.span.with_lo(self.span.lo() + BytePos(1)); |
| self.bump_with(token::Eq, span); |
| true |
| } |
| _ => false, |
| } |
| } |
| |
| |
| /// Checks to see if the next token is either `+` or `+=`. |
| /// Otherwise returns `false`. |
| fn check_plus(&mut self) -> bool { |
| if self.token.is_like_plus() { |
| true |
| } |
| else { |
| self.expected_tokens.push(TokenType::Token(token::BinOp(token::Plus))); |
| false |
| } |
| } |
| |
| /// Expects and consumes an `&`. If `&&` is seen, replaces it with a single |
| /// `&` and continues. If an `&` is not seen, signals an error. |
| fn expect_and(&mut self) -> PResult<'a, ()> { |
| self.expected_tokens.push(TokenType::Token(token::BinOp(token::And))); |
| match self.token { |
| token::BinOp(token::And) => { |
| self.bump(); |
| Ok(()) |
| } |
| token::AndAnd => { |
| let span = self.span.with_lo(self.span.lo() + BytePos(1)); |
| Ok(self.bump_with(token::BinOp(token::And), span)) |
| } |
| _ => self.unexpected() |
| } |
| } |
| |
| /// Expects and consumes an `|`. If `||` is seen, replaces it with a single |
| /// `|` and continues. If an `|` is not seen, signals an error. |
| fn expect_or(&mut self) -> PResult<'a, ()> { |
| self.expected_tokens.push(TokenType::Token(token::BinOp(token::Or))); |
| match self.token { |
| token::BinOp(token::Or) => { |
| self.bump(); |
| Ok(()) |
| } |
| token::OrOr => { |
| let span = self.span.with_lo(self.span.lo() + BytePos(1)); |
| Ok(self.bump_with(token::BinOp(token::Or), span)) |
| } |
| _ => self.unexpected() |
| } |
| } |
| |
| fn expect_no_suffix(&self, sp: Span, kind: &str, suffix: Option<ast::Name>) { |
| match suffix { |
| None => {/* everything ok */} |
| Some(suf) => { |
| let text = suf.as_str(); |
| if text.is_empty() { |
| self.span_bug(sp, "found empty literal suffix in Some") |
| } |
| let msg = format!("{} with a suffix is invalid", kind); |
| self.struct_span_err(sp, &msg) |
| .span_label(sp, msg) |
| .emit(); |
| } |
| } |
| } |
| |
| /// Attempts to consume a `<`. If `<<` is seen, replaces it with a single |
| /// `<` and continue. If `<-` is seen, replaces it with a single `<` |
| /// and continue. If a `<` is not seen, returns false. |
| /// |
| /// This is meant to be used when parsing generics on a path to get the |
| /// starting token. |
| fn eat_lt(&mut self) -> bool { |
| self.expected_tokens.push(TokenType::Token(token::Lt)); |
| let ate = match self.token { |
| token::Lt => { |
| self.bump(); |
| true |
| } |
| token::BinOp(token::Shl) => { |
| let span = self.span.with_lo(self.span.lo() + BytePos(1)); |
| self.bump_with(token::Lt, span); |
| true |
| } |
| token::LArrow => { |
| let span = self.span.with_lo(self.span.lo() + BytePos(1)); |
| self.bump_with(token::BinOp(token::Minus), span); |
| true |
| } |
| _ => false, |
| }; |
| |
| if ate { |
| // See doc comment for `unmatched_angle_bracket_count`. |
| self.unmatched_angle_bracket_count += 1; |
| self.max_angle_bracket_count += 1; |
| debug!("eat_lt: (increment) count={:?}", self.unmatched_angle_bracket_count); |
| } |
| |
| ate |
| } |
| |
| fn expect_lt(&mut self) -> PResult<'a, ()> { |
| if !self.eat_lt() { |
| self.unexpected() |
| } else { |
| Ok(()) |
| } |
| } |
| |
| /// Expects and consumes a single `>` token. if a `>>` is seen, replaces it |
| /// with a single `>` and continues. If a `>` is not seen, signals an error. |
| fn expect_gt(&mut self) -> PResult<'a, ()> { |
| self.expected_tokens.push(TokenType::Token(token::Gt)); |
| let ate = match self.token { |
| token::Gt => { |
| self.bump(); |
| Some(()) |
| } |
| token::BinOp(token::Shr) => { |
| let span = self.span.with_lo(self.span.lo() + BytePos(1)); |
| Some(self.bump_with(token::Gt, span)) |
| } |
| token::BinOpEq(token::Shr) => { |
| let span = self.span.with_lo(self.span.lo() + BytePos(1)); |
| Some(self.bump_with(token::Ge, span)) |
| } |
| token::Ge => { |
| let span = self.span.with_lo(self.span.lo() + BytePos(1)); |
| Some(self.bump_with(token::Eq, span)) |
| } |
| _ => None, |
| }; |
| |
| match ate { |
| Some(_) => { |
| // See doc comment for `unmatched_angle_bracket_count`. |
| if self.unmatched_angle_bracket_count > 0 { |
| self.unmatched_angle_bracket_count -= 1; |
| debug!("expect_gt: (decrement) count={:?}", self.unmatched_angle_bracket_count); |
| } |
| |
| Ok(()) |
| }, |
| None => self.unexpected(), |
| } |
| } |
| |
| /// Eats and discards tokens until one of `kets` is encountered. Respects token trees, |
| /// passes through any errors encountered. Used for error recovery. |
| fn eat_to_tokens(&mut self, kets: &[&token::Token]) { |
| let handler = self.diagnostic(); |
| |
| if let Err(ref mut err) = self.parse_seq_to_before_tokens(kets, |
| SeqSep::none(), |
| TokenExpectType::Expect, |
| |p| Ok(p.parse_token_tree())) { |
| handler.cancel(err); |
| } |
| } |
| |
| /// Parses a sequence, including the closing delimiter. The function |
| /// `f` must consume tokens until reaching the next separator or |
| /// closing bracket. |
| pub fn parse_seq_to_end<T, F>(&mut self, |
| ket: &token::Token, |
| sep: SeqSep, |
| f: F) |
| -> PResult<'a, Vec<T>> where |
| F: FnMut(&mut Parser<'a>) -> PResult<'a, T>, |
| { |
| let (val, recovered) = self.parse_seq_to_before_end(ket, sep, f)?; |
| if !recovered { |
| self.bump(); |
| } |
| Ok(val) |
| } |
| |
| /// Parses a sequence, not including the closing delimiter. The function |
| /// `f` must consume tokens until reaching the next separator or |
| /// closing bracket. |
| pub fn parse_seq_to_before_end<T, F>( |
| &mut self, |
| ket: &token::Token, |
| sep: SeqSep, |
| f: F, |
| ) -> PResult<'a, (Vec<T>, bool)> |
| where F: FnMut(&mut Parser<'a>) -> PResult<'a, T> |
| { |
| self.parse_seq_to_before_tokens(&[ket], sep, TokenExpectType::Expect, f) |
| } |
| |
| fn parse_seq_to_before_tokens<T, F>( |
| &mut self, |
| kets: &[&token::Token], |
| sep: SeqSep, |
| expect: TokenExpectType, |
| mut f: F, |
| ) -> PResult<'a, (Vec<T>, bool /* recovered */)> |
| where F: FnMut(&mut Parser<'a>) -> PResult<'a, T> |
| { |
| let mut first = true; |
| let mut recovered = false; |
| let mut v = vec![]; |
| while !kets.iter().any(|k| { |
| match expect { |
| TokenExpectType::Expect => self.check(k), |
| TokenExpectType::NoExpect => self.token == **k, |
| } |
| }) { |
| match self.token { |
| token::CloseDelim(..) | token::Eof => break, |
| _ => {} |
| }; |
| if let Some(ref t) = sep.sep { |
| if first { |
| first = false; |
| } else { |
| match self.expect(t) { |
| Ok(false) => {} |
| Ok(true) => { |
| recovered = true; |
| break; |
| } |
| Err(mut e) => { |
| // Attempt to keep parsing if it was a similar separator |
| if let Some(ref tokens) = t.similar_tokens() { |
| if tokens.contains(&self.token) { |
| self.bump(); |
| } |
| } |
| e.emit(); |
| // Attempt to keep parsing if it was an omitted separator |
| match f(self) { |
| Ok(t) => { |
| v.push(t); |
| continue; |
| }, |
| Err(mut e) => { |
| e.cancel(); |
| break; |
| } |
| } |
| } |
| } |
| } |
| } |
| if sep.trailing_sep_allowed && kets.iter().any(|k| { |
| match expect { |
| TokenExpectType::Expect => self.check(k), |
| TokenExpectType::NoExpect => self.token == **k, |
| } |
| }) { |
| break; |
| } |
| |
| let t = f(self)?; |
| v.push(t); |
| } |
| |
| Ok((v, recovered)) |
| } |
| |
| /// Parses a sequence, including the closing delimiter. The function |
| /// `f` must consume tokens until reaching the next separator or |
| /// closing bracket. |
| fn parse_unspanned_seq<T, F>( |
| &mut self, |
| bra: &token::Token, |
| ket: &token::Token, |
| sep: SeqSep, |
| f: F, |
| ) -> PResult<'a, Vec<T>> where |
| F: FnMut(&mut Parser<'a>) -> PResult<'a, T>, |
| { |
| self.expect(bra)?; |
| let (result, recovered) = self.parse_seq_to_before_end(ket, sep, f)?; |
| if !recovered { |
| self.eat(ket); |
| } |
| Ok(result) |
| } |
| |
| /// Advance the parser by one token |
| pub fn bump(&mut self) { |
| if self.prev_token_kind == PrevTokenKind::Eof { |
| // Bumping after EOF is a bad sign, usually an infinite loop. |
| self.bug("attempted to bump the parser past EOF (may be stuck in a loop)"); |
| } |
| |
| self.prev_span = self.meta_var_span.take().unwrap_or(self.span); |
| |
| // Record last token kind for possible error recovery. |
| self.prev_token_kind = match self.token { |
| token::DocComment(..) => PrevTokenKind::DocComment, |
| token::Comma => PrevTokenKind::Comma, |
| token::BinOp(token::Plus) => PrevTokenKind::Plus, |
| token::Interpolated(..) => PrevTokenKind::Interpolated, |
| token::Eof => PrevTokenKind::Eof, |
| token::Ident(..) => PrevTokenKind::Ident, |
| _ => PrevTokenKind::Other, |
| }; |
| |
| let next = self.next_tok(); |
| self.span = next.sp; |
| self.token = next.tok; |
| self.expected_tokens.clear(); |
| // check after each token |
| self.process_potential_macro_variable(); |
| } |
| |
| /// Advance the parser using provided token as a next one. Use this when |
| /// consuming a part of a token. For example a single `<` from `<<`. |
| fn bump_with(&mut self, next: token::Token, span: Span) { |
| self.prev_span = self.span.with_hi(span.lo()); |
| // It would be incorrect to record the kind of the current token, but |
| // fortunately for tokens currently using `bump_with`, the |
| // prev_token_kind will be of no use anyway. |
| self.prev_token_kind = PrevTokenKind::Other; |
| self.span = span; |
| self.token = next; |
| self.expected_tokens.clear(); |
| } |
| |
| pub fn look_ahead<R, F>(&self, dist: usize, f: F) -> R where |
| F: FnOnce(&token::Token) -> R, |
| { |
| if dist == 0 { |
| return f(&self.token) |
| } |
| |
| f(&match self.token_cursor.frame.tree_cursor.look_ahead(dist - 1) { |
| Some(tree) => match tree { |
| TokenTree::Token(_, tok) => tok, |
| TokenTree::Delimited(_, delim, _) => token::OpenDelim(delim), |
| }, |
| None => token::CloseDelim(self.token_cursor.frame.delim), |
| }) |
| } |
| |
| fn look_ahead_span(&self, dist: usize) -> Span { |
| if dist == 0 { |
| return self.span |
| } |
| |
| match self.token_cursor.frame.tree_cursor.look_ahead(dist - 1) { |
| Some(TokenTree::Token(span, _)) => span, |
| Some(TokenTree::Delimited(span, ..)) => span.entire(), |
| None => self.look_ahead_span(dist - 1), |
| } |
| } |
| pub fn fatal(&self, m: &str) -> DiagnosticBuilder<'a> { |
| self.sess.span_diagnostic.struct_span_fatal(self.span, m) |
| } |
| pub fn span_fatal<S: Into<MultiSpan>>(&self, sp: S, m: &str) -> DiagnosticBuilder<'a> { |
| self.sess.span_diagnostic.struct_span_fatal(sp, m) |
| } |
| fn span_fatal_err<S: Into<MultiSpan>>(&self, sp: S, err: Error) -> DiagnosticBuilder<'a> { |
| err.span_err(sp, self.diagnostic()) |
| } |
| fn bug(&self, m: &str) -> ! { |
| self.sess.span_diagnostic.span_bug(self.span, m) |
| } |
| fn span_err<S: Into<MultiSpan>>(&self, sp: S, m: &str) { |
| self.sess.span_diagnostic.span_err(sp, m) |
| } |
| fn struct_span_err<S: Into<MultiSpan>>(&self, sp: S, m: &str) -> DiagnosticBuilder<'a> { |
| self.sess.span_diagnostic.struct_span_err(sp, m) |
| } |
| crate fn span_bug<S: Into<MultiSpan>>(&self, sp: S, m: &str) -> ! { |
| self.sess.span_diagnostic.span_bug(sp, m) |
| } |
| |
| fn cancel(&self, err: &mut DiagnosticBuilder<'_>) { |
| self.sess.span_diagnostic.cancel(err) |
| } |
| |
| crate fn diagnostic(&self) -> &'a errors::Handler { |
| &self.sess.span_diagnostic |
| } |
| |
| /// Is the current token one of the keywords that signals a bare function type? |
| fn token_is_bare_fn_keyword(&mut self) -> bool { |
| self.check_keyword(keywords::Fn) || |
| self.check_keyword(keywords::Unsafe) || |
| self.check_keyword(keywords::Extern) |
| } |
| |
| /// Parses a `TyKind::BareFn` type. |
| fn parse_ty_bare_fn(&mut self, generic_params: Vec<GenericParam>) -> PResult<'a, TyKind> { |
| /* |
| |
| [unsafe] [extern "ABI"] fn (S) -> T |
| ^~~~^ ^~~~^ ^~^ ^ |
| | | | | |
| | | | Return type |
| | | Argument types |
| | | |
| | ABI |
| Function Style |
| */ |
| |
| let unsafety = self.parse_unsafety(); |
| let abi = if self.eat_keyword(keywords::Extern) { |
| self.parse_opt_abi()?.unwrap_or(Abi::C) |
| } else { |
| Abi::Rust |
| }; |
| |
| self.expect_keyword(keywords::Fn)?; |
| let (inputs, variadic) = self.parse_fn_args(false, true)?; |
| let ret_ty = self.parse_ret_ty(false)?; |
| let decl = P(FnDecl { |
| inputs, |
| output: ret_ty, |
| variadic, |
| }); |
| Ok(TyKind::BareFn(P(BareFnTy { |
| abi, |
| unsafety, |
| generic_params, |
| decl, |
| }))) |
| } |
| |
| /// Parses asyncness: `async` or nothing. |
| fn parse_asyncness(&mut self) -> IsAsync { |
| if self.eat_keyword(keywords::Async) { |
| IsAsync::Async { |
| closure_id: ast::DUMMY_NODE_ID, |
| return_impl_trait_id: ast::DUMMY_NODE_ID, |
| } |
| } else { |
| IsAsync::NotAsync |
| } |
| } |
| |
| /// Parses unsafety: `unsafe` or nothing. |
| fn parse_unsafety(&mut self) -> Unsafety { |
| if self.eat_keyword(keywords::Unsafe) { |
| Unsafety::Unsafe |
| } else { |
| Unsafety::Normal |
| } |
| } |
| |
| /// Parses the items in a trait declaration. |
| pub fn parse_trait_item(&mut self, at_end: &mut bool) -> PResult<'a, TraitItem> { |
| maybe_whole!(self, NtTraitItem, |x| x); |
| let attrs = self.parse_outer_attributes()?; |
| let (mut item, tokens) = self.collect_tokens(|this| { |
| this.parse_trait_item_(at_end, attrs) |
| })?; |
| // See `parse_item` for why this clause is here. |
| if !item.attrs.iter().any(|attr| attr.style == AttrStyle::Inner) { |
| item.tokens = Some(tokens); |
| } |
| Ok(item) |
| } |
| |
| fn parse_trait_item_(&mut self, |
| at_end: &mut bool, |
| mut attrs: Vec<Attribute>) -> PResult<'a, TraitItem> { |
| let lo = self.span; |
| |
| let (name, node, generics) = if self.eat_keyword(keywords::Type) { |
| self.parse_trait_item_assoc_ty()? |
| } else if self.is_const_item() { |
| self.expect_keyword(keywords::Const)?; |
| let ident = self.parse_ident()?; |
| self.expect(&token::Colon)?; |
| let ty = self.parse_ty()?; |
| let default = if self.eat(&token::Eq) { |
| let expr = self.parse_expr()?; |
| self.expect(&token::Semi)?; |
| Some(expr) |
| } else { |
| self.expect(&token::Semi)?; |
| None |
| }; |
| (ident, TraitItemKind::Const(ty, default), ast::Generics::default()) |
| } else if let Some(mac) = self.parse_assoc_macro_invoc("trait", None, &mut false)? { |
| // trait item macro. |
| (keywords::Invalid.ident(), ast::TraitItemKind::Macro(mac), ast::Generics::default()) |
| } else { |
| let (constness, unsafety, asyncness, abi) = self.parse_fn_front_matter()?; |
| |
| let ident = self.parse_ident()?; |
| let mut generics = self.parse_generics()?; |
| |
| let d = self.parse_fn_decl_with_self(|p: &mut Parser<'a>| { |
| // This is somewhat dubious; We don't want to allow |
| // argument names to be left off if there is a |
| // definition... |
| |
| // We don't allow argument names to be left off in edition 2018. |
| p.parse_arg_general(p.span.rust_2018(), true) |
| })?; |
| generics.where_clause = self.parse_where_clause()?; |
| |
| let sig = ast::MethodSig { |
| header: FnHeader { |
| unsafety, |
| constness, |
| abi, |
| asyncness, |
| }, |
| decl: d, |
| }; |
| |
| let body = match self.token { |
| token::Semi => { |
| self.bump(); |
| *at_end = true; |
| debug!("parse_trait_methods(): parsing required method"); |
| None |
| } |
| token::OpenDelim(token::Brace) => { |
| debug!("parse_trait_methods(): parsing provided method"); |
| *at_end = true; |
| let (inner_attrs, body) = self.parse_inner_attrs_and_block()?; |
| attrs.extend(inner_attrs.iter().cloned()); |
| Some(body) |
| } |
| token::Interpolated(ref nt) => { |
| match **nt { |
| token::NtBlock(..) => { |
| *at_end = true; |
| let (inner_attrs, body) = self.parse_inner_attrs_and_block()?; |
| attrs.extend(inner_attrs.iter().cloned()); |
| Some(body) |
| } |
| _ => { |
| let token_str = self.this_token_descr(); |
| let mut err = self.fatal(&format!("expected `;` or `{{`, found {}", |
| token_str)); |
| err.span_label(self.span, "expected `;` or `{`"); |
| return Err(err); |
| } |
| } |
| } |
| _ => { |
| let token_str = self.this_token_descr(); |
| let mut err = self.fatal(&format!("expected `;` or `{{`, found {}", |
| token_str)); |
| err.span_label(self.span, "expected `;` or `{`"); |
| return Err(err); |
| } |
| }; |
| (ident, ast::TraitItemKind::Method(sig, body), generics) |
| }; |
| |
| Ok(TraitItem { |
| id: ast::DUMMY_NODE_ID, |
| ident: name, |
| attrs, |
| generics, |
| node, |
| span: lo.to(self.prev_span), |
| tokens: None, |
| }) |
| } |
| |
| /// Parses an optional return type `[ -> TY ]` in a function declaration. |
| fn parse_ret_ty(&mut self, allow_plus: bool) -> PResult<'a, FunctionRetTy> { |
| if self.eat(&token::RArrow) { |
| Ok(FunctionRetTy::Ty(self.parse_ty_common(allow_plus, true)?)) |
| } else { |
| Ok(FunctionRetTy::Default(self.span.shrink_to_lo())) |
| } |
| } |
| |
| /// Parses a type. |
| pub fn parse_ty(&mut self) -> PResult<'a, P<Ty>> { |
| self.parse_ty_common(true, true) |
| } |
| |
| /// Parses a type in restricted contexts where `+` is not permitted. |
| /// |
| /// Example 1: `&'a TYPE` |
| /// `+` is prohibited to maintain operator priority (P(+) < P(&)). |
| /// Example 2: `value1 as TYPE + value2` |
| /// `+` is prohibited to avoid interactions with expression grammar. |
| fn parse_ty_no_plus(&mut self) -> PResult<'a, P<Ty>> { |
| self.parse_ty_common(false, true) |
| } |
| |
| fn parse_ty_common(&mut self, allow_plus: bool, allow_qpath_recovery: bool) |
| -> PResult<'a, P<Ty>> { |
| maybe_whole!(self, NtTy, |x| x); |
| |
| let lo = self.span; |
| let mut impl_dyn_multi = false; |
| let node = if self.eat(&token::OpenDelim(token::Paren)) { |
| // `(TYPE)` is a parenthesized type. |
| // `(TYPE,)` is a tuple with a single field of type TYPE. |
| let mut ts = vec![]; |
| let mut last_comma = false; |
| while self.token != token::CloseDelim(token::Paren) { |
| ts.push(self.parse_ty()?); |
| if self.eat(&token::Comma) { |
| last_comma = true; |
| } else { |
| last_comma = false; |
| break; |
| } |
| } |
| let trailing_plus = self.prev_token_kind == PrevTokenKind::Plus; |
| self.expect(&token::CloseDelim(token::Paren))?; |
| |
| if ts.len() == 1 && !last_comma { |
| let ty = ts.into_iter().nth(0).unwrap().into_inner(); |
| let maybe_bounds = allow_plus && self.token.is_like_plus(); |
| match ty.node { |
| // `(TY_BOUND_NOPAREN) + BOUND + ...`. |
| TyKind::Path(None, ref path) if maybe_bounds => { |
| self.parse_remaining_bounds(Vec::new(), path.clone(), lo, true)? |
| } |
| TyKind::TraitObject(ref bounds, TraitObjectSyntax::None) |
| if maybe_bounds && bounds.len() == 1 && !trailing_plus => { |
| let path = match bounds[0] { |
| GenericBound::Trait(ref pt, ..) => pt.trait_ref.path.clone(), |
| GenericBound::Outlives(..) => self.bug("unexpected lifetime bound"), |
| }; |
| self.parse_remaining_bounds(Vec::new(), path, lo, true)? |
| } |
| // `(TYPE)` |
| _ => TyKind::Paren(P(ty)) |
| } |
| } else { |
| TyKind::Tup(ts) |
| } |
| } else if self.eat(&token::Not) { |
| // Never type `!` |
| TyKind::Never |
| } else if self.eat(&token::BinOp(token::Star)) { |
| // Raw pointer |
| TyKind::Ptr(self.parse_ptr()?) |
| } else if self.eat(&token::OpenDelim(token::Bracket)) { |
| // Array or slice |
| let t = self.parse_ty()?; |
| // Parse optional `; EXPR` in `[TYPE; EXPR]` |
| let t = match self.maybe_parse_fixed_length_of_vec()? { |
| None => TyKind::Slice(t), |
| Some(length) => TyKind::Array(t, AnonConst { |
| id: ast::DUMMY_NODE_ID, |
| value: length, |
| }), |
| }; |
| self.expect(&token::CloseDelim(token::Bracket))?; |
| t |
| } else if self.check(&token::BinOp(token::And)) || self.check(&token::AndAnd) { |
| // Reference |
| self.expect_and()?; |
| self.parse_borrowed_pointee()? |
| } else if self.eat_keyword_noexpect(keywords::Typeof) { |
| // `typeof(EXPR)` |
| // In order to not be ambiguous, the type must be surrounded by parens. |
| self.expect(&token::OpenDelim(token::Paren))?; |
| let e = AnonConst { |
| id: ast::DUMMY_NODE_ID, |
| value: self.parse_expr()?, |
| }; |
| self.expect(&token::CloseDelim(token::Paren))?; |
| TyKind::Typeof(e) |
| } else if self.eat_keyword(keywords::Underscore) { |
| // A type to be inferred `_` |
| TyKind::Infer |
| } else if self.token_is_bare_fn_keyword() { |
| // Function pointer type |
| self.parse_ty_bare_fn(Vec::new())? |
| } else if self.check_keyword(keywords::For) { |
| // Function pointer type or bound list (trait object type) starting with a poly-trait. |
| // `for<'lt> [unsafe] [extern "ABI"] fn (&'lt S) -> T` |
| // `for<'lt> Trait1<'lt> + Trait2 + 'a` |
| let lo = self.span; |
| let lifetime_defs = self.parse_late_bound_lifetime_defs()?; |
| if self.token_is_bare_fn_keyword() { |
| self.parse_ty_bare_fn(lifetime_defs)? |
| } else { |
| let path = self.parse_path(PathStyle::Type)?; |
| let parse_plus = allow_plus && self.check_plus(); |
| self.parse_remaining_bounds(lifetime_defs, path, lo, parse_plus)? |
| } |
| } else if self.eat_keyword(keywords::Impl) { |
| // Always parse bounds greedily for better error recovery. |
| let bounds = self.parse_generic_bounds(None)?; |
| impl_dyn_multi = bounds.len() > 1 || self.prev_token_kind == PrevTokenKind::Plus; |
| TyKind::ImplTrait(ast::DUMMY_NODE_ID, bounds) |
| } else if self.check_keyword(keywords::Dyn) && |
| (self.span.rust_2018() || |
| self.look_ahead(1, |t| t.can_begin_bound() && |
| !can_continue_type_after_non_fn_ident(t))) { |
| self.bump(); // `dyn` |
| // Always parse bounds greedily for better error recovery. |
| let bounds = self.parse_generic_bounds(None)?; |
| impl_dyn_multi = bounds.len() > 1 || self.prev_token_kind == PrevTokenKind::Plus; |
| TyKind::TraitObject(bounds, TraitObjectSyntax::Dyn) |
| } else if self.check(&token::Question) || |
| self.check_lifetime() && self.look_ahead(1, |t| t.is_like_plus()) { |
| // Bound list (trait object type) |
| TyKind::TraitObject(self.parse_generic_bounds_common(allow_plus, None)?, |
| TraitObjectSyntax::None) |
| } else if self.eat_lt() { |
| // Qualified path |
| let (qself, path) = self.parse_qpath(PathStyle::Type)?; |
| TyKind::Path(Some(qself), path) |
| } else if self.token.is_path_start() { |
| // Simple path |
| let path = self.parse_path(PathStyle::Type)?; |
| if self.eat(&token::Not) { |
| // Macro invocation in type position |
| let (delim, tts) = self.expect_delimited_token_tree()?; |
| let node = Mac_ { path, tts, delim }; |
| TyKind::Mac(respan(lo.to(self.prev_span), node)) |
| } else { |
| // Just a type path or bound list (trait object type) starting with a trait. |
| // `Type` |
| // `Trait1 + Trait2 + 'a` |
| if allow_plus && self.check_plus() { |
| self.parse_remaining_bounds(Vec::new(), path, lo, true)? |
| } else { |
| TyKind::Path(None, path) |
| } |
| } |
| } else { |
| let msg = format!("expected type, found {}", self.this_token_descr()); |
| return Err(self.fatal(&msg)); |
| }; |
| |
| let span = lo.to(self.prev_span); |
| let ty = Ty { node, span, id: ast::DUMMY_NODE_ID }; |
| |
| // Try to recover from use of `+` with incorrect priority. |
| self.maybe_report_ambiguous_plus(allow_plus, impl_dyn_multi, &ty); |
| self.maybe_recover_from_bad_type_plus(allow_plus, &ty)?; |
| let ty = self.maybe_recover_from_bad_qpath(ty, allow_qpath_recovery)?; |
| |
| Ok(P(ty)) |
| } |
| |
| fn parse_remaining_bounds(&mut self, generic_params: Vec<GenericParam>, path: ast::Path, |
| lo: Span, parse_plus: bool) -> PResult<'a, TyKind> { |
| let poly_trait_ref = PolyTraitRef::new(generic_params, path, lo.to(self.prev_span)); |
| let mut bounds = vec![GenericBound::Trait(poly_trait_ref, TraitBoundModifier::None)]; |
| if parse_plus { |
| self.eat_plus(); // `+`, or `+=` gets split and `+` is discarded |
| bounds.append(&mut self.parse_generic_bounds(None)?); |
| } |
| Ok(TyKind::TraitObject(bounds, TraitObjectSyntax::None)) |
| } |
| |
| fn maybe_report_ambiguous_plus(&mut self, allow_plus: bool, impl_dyn_multi: bool, ty: &Ty) { |
| if !allow_plus && impl_dyn_multi { |
| let sum_with_parens = format!("({})", pprust::ty_to_string(&ty)); |
| self.struct_span_err(ty.span, "ambiguous `+` in a type") |
| .span_suggestion( |
| ty.span, |
| "use parentheses to disambiguate", |
| sum_with_parens, |
| Applicability::MachineApplicable |
| ).emit(); |
| } |
| } |
| |
| fn maybe_recover_from_bad_type_plus(&mut self, allow_plus: bool, ty: &Ty) -> PResult<'a, ()> { |
| // Do not add `+` to expected tokens. |
| if !allow_plus || !self.token.is_like_plus() { |
| return Ok(()) |
| } |
| |
| self.bump(); // `+` |
| let bounds = self.parse_generic_bounds(None)?; |
| let sum_span = ty.span.to(self.prev_span); |
| |
| let mut err = struct_span_err!(self.sess.span_diagnostic, sum_span, E0178, |
| "expected a path on the left-hand side of `+`, not `{}`", pprust::ty_to_string(ty)); |
| |
| match ty.node { |
| TyKind::Rptr(ref lifetime, ref mut_ty) => { |
| let sum_with_parens = pprust::to_string(|s| { |
| use crate::print::pprust::PrintState; |
| |
| s.s.word("&")?; |
| s.print_opt_lifetime(lifetime)?; |
| s.print_mutability(mut_ty.mutbl)?; |
| s.popen()?; |
| s.print_type(&mut_ty.ty)?; |
| s.print_type_bounds(" +", &bounds)?; |
| s.pclose() |
| }); |
| err.span_suggestion( |
| sum_span, |
| "try adding parentheses", |
| sum_with_parens, |
| Applicability::MachineApplicable |
| ); |
| } |
| TyKind::Ptr(..) | TyKind::BareFn(..) => { |
| err.span_label(sum_span, "perhaps you forgot parentheses?"); |
| } |
| _ => { |
| err.span_label(sum_span, "expected a path"); |
| }, |
| } |
| err.emit(); |
| Ok(()) |
| } |
| |
| // Try to recover from associated item paths like `[T]::AssocItem`/`(T, U)::AssocItem`. |
| fn maybe_recover_from_bad_qpath<T: RecoverQPath>(&mut self, base: T, allow_recovery: bool) |
| -> PResult<'a, T> { |
| // Do not add `::` to expected tokens. |
| if !allow_recovery || self.token != token::ModSep { |
| return Ok(base); |
| } |
| let ty = match base.to_ty() { |
| Some(ty) => ty, |
| None => return Ok(base), |
| }; |
| |
| self.bump(); // `::` |
| let mut segments = Vec::new(); |
| self.parse_path_segments(&mut segments, T::PATH_STYLE, true)?; |
| |
| let span = ty.span.to(self.prev_span); |
| let path_span = span.to(span); // use an empty path since `position` == 0 |
| let recovered = base.to_recovered( |
| Some(QSelf { ty, path_span, position: 0 }), |
| ast::Path { segments, span }, |
| ); |
| |
| self.diagnostic() |
| .struct_span_err(span, "missing angle brackets in associated item path") |
| .span_suggestion( // this is a best-effort recovery |
| span, "try", recovered.to_string(), Applicability::MaybeIncorrect |
| ).emit(); |
| |
| Ok(recovered) |
| } |
| |
| fn parse_borrowed_pointee(&mut self) -> PResult<'a, TyKind> { |
| let opt_lifetime = if self.check_lifetime() { Some(self.expect_lifetime()) } else { None }; |
| let mutbl = self.parse_mutability(); |
| let ty = self.parse_ty_no_plus()?; |
| return Ok(TyKind::Rptr(opt_lifetime, MutTy { ty: ty, mutbl: mutbl })); |
| } |
| |
| fn parse_ptr(&mut self) -> PResult<'a, MutTy> { |
| let mutbl = if self.eat_keyword(keywords::Mut) { |
| Mutability::Mutable |
| } else if self.eat_keyword(keywords::Const) { |
| Mutability::Immutable |
| } else { |
| let span = self.prev_span; |
| let msg = "expected mut or const in raw pointer type"; |
| self.struct_span_err(span, msg) |
| .span_label(span, msg) |
| .help("use `*mut T` or `*const T` as appropriate") |
| .emit(); |
| Mutability::Immutable |
| }; |
| let t = self.parse_ty_no_plus()?; |
| Ok(MutTy { ty: t, mutbl: mutbl }) |
| } |
| |
| fn is_named_argument(&mut self) -> bool { |
| let offset = match self.token { |
| token::Interpolated(ref nt) => match **nt { |
| token::NtPat(..) => return self.look_ahead(1, |t| t == &token::Colon), |
| _ => 0, |
| } |
| token::BinOp(token::And) | token::AndAnd => 1, |
| _ if self.token.is_keyword(keywords::Mut) => 1, |
| _ => 0, |
| }; |
| |
| self.look_ahead(offset, |t| t.is_ident()) && |
| self.look_ahead(offset + 1, |t| t == &token::Colon) |
| } |
| |
| /// Skips unexpected attributes and doc comments in this position and emits an appropriate |
| /// error. |
| fn eat_incorrect_doc_comment(&mut self, applied_to: &str) { |
| if let token::DocComment(_) = self.token { |
| let mut err = self.diagnostic().struct_span_err( |
| self.span, |
| &format!("documentation comments cannot be applied to {}", applied_to), |
| ); |
| err.span_label(self.span, "doc comments are not allowed here"); |
| err.emit(); |
| self.bump(); |
| } else if self.token == token::Pound && self.look_ahead(1, |t| { |
| *t == token::OpenDelim(token::Bracket) |
| }) { |
| let lo = self.span; |
| // Skip every token until next possible arg. |
| while self.token != token::CloseDelim(token::Bracket) { |
| self.bump(); |
| } |
| let sp = lo.to(self.span); |
| self.bump(); |
| let mut err = self.diagnostic().struct_span_err( |
| sp, |
| &format!("attributes cannot be applied to {}", applied_to), |
| ); |
| err.span_label(sp, "attributes are not allowed here"); |
| err.emit(); |
| } |
| } |
| |
| /// This version of parse arg doesn't necessarily require identifier names. |
| fn parse_arg_general(&mut self, require_name: bool, is_trait_item: bool) -> PResult<'a, Arg> { |
| maybe_whole!(self, NtArg, |x| x); |
| |
| if let Ok(Some(_)) = self.parse_self_arg() { |
| let mut err = self.struct_span_err(self.prev_span, |
| "unexpected `self` argument in function"); |
| err.span_label(self.prev_span, |
| "`self` is only valid as the first argument of an associated function"); |
| return Err(err); |
| } |
| |
| let (pat, ty) = if require_name || self.is_named_argument() { |
| debug!("parse_arg_general parse_pat (require_name:{})", |
| require_name); |
| self.eat_incorrect_doc_comment("method arguments"); |
| let pat = self.parse_pat(Some("argument name"))?; |
| |
| if let Err(mut err) = self.expect(&token::Colon) { |
| // If we find a pattern followed by an identifier, it could be an (incorrect) |
| // C-style parameter declaration. |
| if self.check_ident() && self.look_ahead(1, |t| { |
| *t == token::Comma || *t == token::CloseDelim(token::Paren) |
| }) { |
| let ident = self.parse_ident().unwrap(); |
| let span = pat.span.with_hi(ident.span.hi()); |
| |
| err.span_suggestion( |
| span, |
| "declare the type after the parameter binding", |
| "<identifier>: <type>", |
| Applicability::HasPlaceholders, |
| ); |
| } else if require_name && is_trait_item { |
| if let PatKind::Ident(_, ident, _) = pat.node { |
| err.span_suggestion( |
| pat.span, |
| "explicitly ignore parameter", |
| format!("_: {}", ident), |
| Applicability::MachineApplicable, |
| ); |
| } |
| |
| err.note("anonymous parameters are removed in the 2018 edition (see RFC 1685)"); |
| } |
| |
| return Err(err); |
| } |
| |
| self.eat_incorrect_doc_comment("a method argument's type"); |
| (pat, self.parse_ty()?) |
| } else { |
| debug!("parse_arg_general ident_to_pat"); |
| let parser_snapshot_before_ty = self.clone(); |
| self.eat_incorrect_doc_comment("a method argument's type"); |
| let mut ty = self.parse_ty(); |
| if ty.is_ok() && self.token != token::Comma && |
| self.token != token::CloseDelim(token::Paren) { |
| // This wasn't actually a type, but a pattern looking like a type, |
| // so we are going to rollback and re-parse for recovery. |
| ty = self.unexpected(); |
| } |
| match ty { |
| Ok(ty) => { |
| let ident = Ident::new(keywords::Invalid.name(), self.prev_span); |
| let pat = P(Pat { |
| id: ast::DUMMY_NODE_ID, |
| node: PatKind::Ident( |
| BindingMode::ByValue(Mutability::Immutable), ident, None), |
| span: ty.span, |
| }); |
| (pat, ty) |
| } |
| Err(mut err) => { |
| // Recover from attempting to parse the argument as a type without pattern. |
| err.cancel(); |
| mem::replace(self, parser_snapshot_before_ty); |
| let pat = self.parse_pat(Some("argument name"))?; |
| self.expect(&token::Colon)?; |
| let ty = self.parse_ty()?; |
| |
| let mut err = self.diagnostic().struct_span_err_with_code( |
| pat.span, |
| "patterns aren't allowed in methods without bodies", |
| DiagnosticId::Error("E0642".into()), |
| ); |
| err.span_suggestion_short( |
| pat.span, |
| "give this argument a name or use an underscore to ignore it", |
| "_".to_owned(), |
| Applicability::MachineApplicable, |
| ); |
| err.emit(); |
| |
| // Pretend the pattern is `_`, to avoid duplicate errors from AST validation. |
| let pat = P(Pat { |
| node: PatKind::Wild, |
| span: pat.span, |
| id: ast::DUMMY_NODE_ID |
| }); |
| (pat, ty) |
| } |
| } |
| }; |
| |
| Ok(Arg { ty, pat, id: ast::DUMMY_NODE_ID }) |
| } |
| |
| /// Parses a single function argument. |
| crate fn parse_arg(&mut self) -> PResult<'a, Arg> { |
| self.parse_arg_general(true, false) |
| } |
| |
| /// Parses an argument in a lambda header (e.g., `|arg, arg|`). |
| fn parse_fn_block_arg(&mut self) -> PResult<'a, Arg> { |
| let pat = self.parse_pat(Some("argument name"))?; |
| let t = if self.eat(&token::Colon) { |
| self.parse_ty()? |
| } else { |
| P(Ty { |
| id: ast::DUMMY_NODE_ID, |
| node: TyKind::Infer, |
| span: self.prev_span, |
| }) |
| }; |
| Ok(Arg { |
| ty: t, |
| pat, |
| id: ast::DUMMY_NODE_ID |
| }) |
| } |
| |
| fn maybe_parse_fixed_length_of_vec(&mut self) -> PResult<'a, Option<P<ast::Expr>>> { |
| if self.eat(&token::Semi) { |
| Ok(Some(self.parse_expr()?)) |
| } else { |
| Ok(None) |
| } |
| } |
| |
| /// Matches `token_lit = LIT_INTEGER | ...`. |
| fn parse_lit_token(&mut self) -> PResult<'a, LitKind> { |
| let out = match self.token { |
| token::Interpolated(ref nt) => match **nt { |
| token::NtExpr(ref v) | token::NtLiteral(ref v) => match v.node { |
| ExprKind::Lit(ref lit) => { lit.node.clone() } |
| _ => { return self.unexpected_last(&self.token); } |
| }, |
| _ => { return self.unexpected_last(&self.token); } |
| }, |
| token::Literal(lit, suf) => { |
| let diag = Some((self.span, &self.sess.span_diagnostic)); |
| let (suffix_illegal, result) = parse::lit_token(lit, suf, diag); |
| |
| if suffix_illegal { |
| let sp = self.span; |
| self.expect_no_suffix(sp, lit.literal_name(), suf) |
| } |
| |
| result.unwrap() |
| } |
| token::Dot if self.look_ahead(1, |t| match t { |
| token::Literal(parse::token::Lit::Integer(_) , _) => true, |
| _ => false, |
| }) => { // recover from `let x = .4;` |
| let lo = self.span; |
| self.bump(); |
| if let token::Literal( |
| parse::token::Lit::Integer(val), |
| suffix, |
| ) = self.token { |
| let suffix = suffix.and_then(|s| { |
| let s = s.as_str().get(); |
| if ["f32", "f64"].contains(&s) { |
| Some(s) |
| } else { |
| None |
| } |
| }).unwrap_or(""); |
| self.bump(); |
| let sp = lo.to(self.prev_span); |
| let mut err = self.diagnostic() |
| .struct_span_err(sp, "float literals must have an integer part"); |
| err.span_suggestion( |
| sp, |
| "must have an integer part", |
| format!("0.{}{}", val, suffix), |
| Applicability::MachineApplicable, |
| ); |
| err.emit(); |
| return Ok(match suffix { |
| "f32" => ast::LitKind::Float(val, ast::FloatTy::F32), |
| "f64" => ast::LitKind::Float(val, ast::FloatTy::F64), |
| _ => ast::LitKind::FloatUnsuffixed(val), |
| }); |
| } else { |
| unreachable!(); |
| }; |
| } |
| _ => { return self.unexpected_last(&self.token); } |
| }; |
| |
| self.bump(); |
| Ok(out) |
| } |
| |
| /// Matches `lit = true | false | token_lit`. |
| crate fn parse_lit(&mut self) -> PResult<'a, Lit> { |
| let lo = self.span; |
| let lit = if self.eat_keyword(keywords::True) { |
| LitKind::Bool(true) |
| } else if self.eat_keyword(keywords::False) { |
| LitKind::Bool(false) |
| } else { |
| let lit = self.parse_lit_token()?; |
| lit |
| }; |
| Ok(source_map::Spanned { node: lit, span: lo.to(self.prev_span) }) |
| } |
| |
| /// Matches `'-' lit | lit` (cf. `ast_validation::AstValidator::check_expr_within_pat`). |
| crate fn parse_literal_maybe_minus(&mut self) -> PResult<'a, P<Expr>> { |
| maybe_whole_expr!(self); |
| |
| let minus_lo = self.span; |
| let minus_present = self.eat(&token::BinOp(token::Minus)); |
| let lo = self.span; |
| let literal = self.parse_lit()?; |
| let hi = self.prev_span; |
| let expr = self.mk_expr(lo.to(hi), ExprKind::Lit(literal), ThinVec::new()); |
| |
| if minus_present { |
| let minus_hi = self.prev_span; |
| let unary = self.mk_unary(UnOp::Neg, expr); |
| Ok(self.mk_expr(minus_lo.to(minus_hi), unary, ThinVec::new())) |
| } else { |
| Ok(expr) |
| } |
| } |
| |
| fn parse_path_segment_ident(&mut self) -> PResult<'a, ast::Ident> { |
| match self.token { |
| token::Ident(ident, _) if self.token.is_path_segment_keyword() => { |
| let span = self.span; |
| self.bump(); |
| Ok(Ident::new(ident.name, span)) |
| } |
| _ => self.parse_ident(), |
| } |
| } |
| |
| fn parse_ident_or_underscore(&mut self) -> PResult<'a, ast::Ident> { |
| match self.token { |
| token::Ident(ident, false) if ident.name == keywords::Underscore.name() => { |
| let span = self.span; |
| self.bump(); |
| Ok(Ident::new(ident.name, span)) |
| } |
| _ => self.parse_ident(), |
| } |
| } |
| |
| /// Parses a qualified path. |
| /// Assumes that the leading `<` has been parsed already. |
| /// |
| /// `qualified_path = <type [as trait_ref]>::path` |
| /// |
| /// # Examples |
| /// `<T>::default` |
| /// `<T as U>::a` |
| /// `<T as U>::F::a<S>` (without disambiguator) |
| /// `<T as U>::F::a::<S>` (with disambiguator) |
| fn parse_qpath(&mut self, style: PathStyle) -> PResult<'a, (QSelf, ast::Path)> { |
| let lo = self.prev_span; |
| let ty = self.parse_ty()?; |
| |
| // `path` will contain the prefix of the path up to the `>`, |
| // if any (e.g., `U` in the `<T as U>::*` examples |
| // above). `path_span` has the span of that path, or an empty |
| // span in the case of something like `<T>::Bar`. |
| let (mut path, path_span); |
| if self.eat_keyword(keywords::As) { |
| let path_lo = self.span; |
| path = self.parse_path(PathStyle::Type)?; |
| path_span = path_lo.to(self.prev_span); |
| } else { |
| path = ast::Path { segments: Vec::new(), span: syntax_pos::DUMMY_SP }; |
| path_span = self.span.to(self.span); |
| } |
| |
| // See doc comment for `unmatched_angle_bracket_count`. |
| self.expect(&token::Gt)?; |
| if self.unmatched_angle_bracket_count > 0 { |
| self.unmatched_angle_bracket_count -= 1; |
| debug!("parse_qpath: (decrement) count={:?}", self.unmatched_angle_bracket_count); |
| } |
| |
| self.expect(&token::ModSep)?; |
| |
| let qself = QSelf { ty, path_span, position: path.segments.len() }; |
| self.parse_path_segments(&mut path.segments, style, true)?; |
| |
| Ok((qself, ast::Path { segments: path.segments, span: lo.to(self.prev_span) })) |
| } |
| |
| /// Parses simple paths. |
| /// |
| /// `path = [::] segment+` |
| /// `segment = ident | ident[::]<args> | ident[::](args) [-> type]` |
| /// |
| /// # Examples |
| /// `a::b::C<D>` (without disambiguator) |
| /// `a::b::C::<D>` (with disambiguator) |
| /// `Fn(Args)` (without disambiguator) |
| /// `Fn::(Args)` (with disambiguator) |
| pub fn parse_path(&mut self, style: PathStyle) -> PResult<'a, ast::Path> { |
| self.parse_path_common(style, true) |
| } |
| |
| crate fn parse_path_common(&mut self, style: PathStyle, enable_warning: bool) |
| -> PResult<'a, ast::Path> { |
| maybe_whole!(self, NtPath, |path| { |
| if style == PathStyle::Mod && |
| path.segments.iter().any(|segment| segment.args.is_some()) { |
| self.diagnostic().span_err(path.span, "unexpected generic arguments in path"); |
| } |
| path |
| }); |
| |
| let lo = self.meta_var_span.unwrap_or(self.span); |
| let mut segments = Vec::new(); |
| let mod_sep_ctxt = self.span.ctxt(); |
| if self.eat(&token::ModSep) { |
| segments.push(PathSegment::path_root(lo.shrink_to_lo().with_ctxt(mod_sep_ctxt))); |
| } |
| self.parse_path_segments(&mut segments, style, enable_warning)?; |
| |
| Ok(ast::Path { segments, span: lo.to(self.prev_span) }) |
| } |
| |
| /// Like `parse_path`, but also supports parsing `Word` meta items into paths for |
| /// backwards-compatibility. This is used when parsing derive macro paths in `#[derive]` |
| /// attributes. |
| pub fn parse_path_allowing_meta(&mut self, style: PathStyle) -> PResult<'a, ast::Path> { |
| let meta_ident = match self.token { |
| token::Interpolated(ref nt) => match **nt { |
| token::NtMeta(ref meta) => match meta.node { |
| ast::MetaItemKind::Word => Some(meta.ident.clone()), |
| _ => None, |
| }, |
| _ => None, |
| }, |
| _ => None, |
| }; |
| if let Some(path) = meta_ident { |
| self.bump(); |
| return Ok(path); |
| } |
| self.parse_path(style) |
| } |
| |
| fn parse_path_segments(&mut self, |
| segments: &mut Vec<PathSegment>, |
| style: PathStyle, |
| enable_warning: bool) |
| -> PResult<'a, ()> { |
| loop { |
| let segment = self.parse_path_segment(style, enable_warning)?; |
| if style == PathStyle::Expr { |
| // In order to check for trailing angle brackets, we must have finished |
| // recursing (`parse_path_segment` can indirectly call this function), |
| // that is, the next token must be the highlighted part of the below example: |
| // |
| // `Foo::<Bar as Baz<T>>::Qux` |
| // ^ here |
| // |
| // As opposed to the below highlight (if we had only finished the first |
| // recursion): |
| // |
| // `Foo::<Bar as Baz<T>>::Qux` |
| // ^ here |
| // |
| // `PathStyle::Expr` is only provided at the root invocation and never in |
| // `parse_path_segment` to recurse and therefore can be checked to maintain |
| // this invariant. |
| self.check_trailing_angle_brackets(&segment, token::ModSep); |
| } |
| segments.push(segment); |
| |
| if self.is_import_coupler() || !self.eat(&token::ModSep) { |
| return Ok(()); |
| } |
| } |
| } |
| |
| fn parse_path_segment(&mut self, style: PathStyle, enable_warning: bool) |
| -> PResult<'a, PathSegment> { |
| let ident = self.parse_path_segment_ident()?; |
| |
| let is_args_start = |token: &token::Token| match *token { |
| token::Lt | token::BinOp(token::Shl) | token::OpenDelim(token::Paren) => true, |
| _ => false, |
| }; |
| let check_args_start = |this: &mut Self| { |
| this.expected_tokens.extend_from_slice( |
| &[TokenType::Token(token::Lt), TokenType::Token(token::OpenDelim(token::Paren))] |
| ); |
| is_args_start(&this.token) |
| }; |
| |
| Ok(if style == PathStyle::Type && check_args_start(self) || |
| style != PathStyle::Mod && self.check(&token::ModSep) |
| && self.look_ahead(1, |t| is_args_start(t)) { |
| // Generic arguments are found - `<`, `(`, `::<` or `::(`. |
| if self.eat(&token::ModSep) && style == PathStyle::Type && enable_warning { |
| self.diagnostic().struct_span_warn(self.prev_span, "unnecessary path disambiguator") |
| .span_label(self.prev_span, "try removing `::`").emit(); |
| } |
| let lo = self.span; |
| |
| // We use `style == PathStyle::Expr` to check if this is in a recursion or not. If |
| // it isn't, then we reset the unmatched angle bracket count as we're about to start |
| // parsing a new path. |
| if style == PathStyle::Expr { |
| self.unmatched_angle_bracket_count = 0; |
| self.max_angle_bracket_count = 0; |
| } |
| |
| let args = if self.eat_lt() { |
| // `<'a, T, A = U>` |
| let (args, bindings) = |
| self.parse_generic_args_with_leaning_angle_bracket_recovery(style, lo)?; |
| self.expect_gt()?; |
| let span = lo.to(self.prev_span); |
| AngleBracketedArgs { args, bindings, span }.into() |
| } else { |
| // `(T, U) -> R` |
| self.bump(); // `(` |
| let (inputs, recovered) = self.parse_seq_to_before_tokens( |
| &[&token::CloseDelim(token::Paren)], |
| SeqSep::trailing_allowed(token::Comma), |
| TokenExpectType::Expect, |
| |p| p.parse_ty())?; |
| if !recovered { |
| self.bump(); // `)` |
| } |
| let span = lo.to(self.prev_span); |
| let output = if self.eat(&token::RArrow) { |
| Some(self.parse_ty_common(false, false)?) |
| } else { |
| None |
| }; |
| ParenthesizedArgs { inputs, output, span }.into() |
| }; |
| |
| PathSegment { ident, args, id: ast::DUMMY_NODE_ID } |
| } else { |
| // Generic arguments are not found. |
| PathSegment::from_ident(ident) |
| }) |
| } |
| |
| crate fn check_lifetime(&mut self) -> bool { |
| self.expected_tokens.push(TokenType::Lifetime); |
| self.token.is_lifetime() |
| } |
| |
| /// Parses a single lifetime `'a` or panics. |
| crate fn expect_lifetime(&mut self) -> Lifetime { |
| if let Some(ident) = self.token.lifetime() { |
| let span = self.span; |
| self.bump(); |
| Lifetime { ident: Ident::new(ident.name, span), id: ast::DUMMY_NODE_ID } |
| } else { |
| self.span_bug(self.span, "not a lifetime") |
| } |
| } |
| |
| fn eat_label(&mut self) -> Option<Label> { |
| if let Some(ident) = self.token.lifetime() { |
| let span = self.span; |
| self.bump(); |
| Some(Label { ident: Ident::new(ident.name, span) }) |
| } else { |
| None |
| } |
| } |
| |
| /// Parses mutability (`mut` or nothing). |
| fn parse_mutability(&mut self) -> Mutability { |
| if self.eat_keyword(keywords::Mut) { |
| Mutability::Mutable |
| } else { |
| Mutability::Immutable |
| } |
| } |
| |
| fn parse_field_name(&mut self) -> PResult<'a, Ident> { |
| if let token::Literal(token::Integer(name), None) = self.token { |
| self.bump(); |
| Ok(Ident::new(name, self.prev_span)) |
| } else { |
| self.parse_ident_common(false) |
| } |
| } |
| |
| /// Parse ident (COLON expr)? |
| fn parse_field(&mut self) -> PResult<'a, Field> { |
| let attrs = self.parse_outer_attributes()?; |
| let lo = self.span; |
| |
| // Check if a colon exists one ahead. This means we're parsing a fieldname. |
| let (fieldname, expr, is_shorthand) = if self.look_ahead(1, |t| { |
| t == &token::Colon || t == &token::Eq |
| }) { |
| let fieldname = self.parse_field_name()?; |
| |
| // Check for an equals token. This means the source incorrectly attempts to |
| // initialize a field with an eq rather than a colon. |
| if self.token == token::Eq { |
| self.diagnostic() |
| .struct_span_err(self.span, "expected `:`, found `=`") |
| .span_suggestion( |
| fieldname.span.shrink_to_hi().to(self.span), |
| "replace equals symbol with a colon", |
| ":".to_string(), |
| Applicability::MachineApplicable, |
| ) |
| .emit(); |
| } |
| self.bump(); // `:` |
| (fieldname, self.parse_expr()?, false) |
| } else { |
| let fieldname = self.parse_ident_common(false)?; |
| |
| // Mimic `x: x` for the `x` field shorthand. |
| let path = ast::Path::from_ident(fieldname); |
| let expr = self.mk_expr(fieldname.span, ExprKind::Path(None, path), ThinVec::new()); |
| (fieldname, expr, true) |
| }; |
| Ok(ast::Field { |
| ident: fieldname, |
| span: lo.to(expr.span), |
| expr, |
| is_shorthand, |
| attrs: attrs.into(), |
| }) |
| } |
| |
| fn mk_expr(&mut self, span: Span, node: ExprKind, attrs: ThinVec<Attribute>) -> P<Expr> { |
| P(Expr { node, span, attrs, id: ast::DUMMY_NODE_ID }) |
| } |
| |
| fn mk_unary(&mut self, unop: ast::UnOp, expr: P<Expr>) -> ast::ExprKind { |
| ExprKind::Unary(unop, expr) |
| } |
| |
| fn mk_binary(&mut self, binop: ast::BinOp, lhs: P<Expr>, rhs: P<Expr>) -> ast::ExprKind { |
| ExprKind::Binary(binop, lhs, rhs) |
| } |
| |
| fn mk_call(&mut self, f: P<Expr>, args: Vec<P<Expr>>) -> ast::ExprKind { |
| ExprKind::Call(f, args) |
| } |
| |
| fn mk_index(&mut self, expr: P<Expr>, idx: P<Expr>) -> ast::ExprKind { |
| ExprKind::Index(expr, idx) |
| } |
| |
| fn mk_range(&mut self, |
| start: Option<P<Expr>>, |
| end: Option<P<Expr>>, |
| limits: RangeLimits) |
| -> PResult<'a, ast::ExprKind> { |
| if end.is_none() && limits == RangeLimits::Closed { |
| Err(self.span_fatal_err(self.span, Error::InclusiveRangeWithNoEnd)) |
| } else { |
| Ok(ExprKind::Range(start, end, limits)) |
| } |
| } |
| |
| fn mk_assign_op(&mut self, binop: ast::BinOp, |
| lhs: P<Expr>, rhs: P<Expr>) -> ast::ExprKind { |
| ExprKind::AssignOp(binop, lhs, rhs) |
| } |
| |
| pub fn mk_mac_expr(&mut self, span: Span, m: Mac_, attrs: ThinVec<Attribute>) -> P<Expr> { |
| P(Expr { |
| id: ast::DUMMY_NODE_ID, |
| node: ExprKind::Mac(source_map::Spanned {node: m, span: span}), |
| span, |
| attrs, |
| }) |
| } |
| |
| fn expect_delimited_token_tree(&mut self) -> PResult<'a, (MacDelimiter, TokenStream)> { |
| let delim = match self.token { |
| token::OpenDelim(delim) => delim, |
| _ => { |
| let msg = "expected open delimiter"; |
| let mut err = self.fatal(msg); |
| err.span_label(self.span, msg); |
| return Err(err) |
| } |
| }; |
| let tts = match self.parse_token_tree() { |
| TokenTree::Delimited(_, _, tts) => tts, |
| _ => unreachable!(), |
| }; |
| let delim = match delim { |
| token::Paren => MacDelimiter::Parenthesis, |
| token::Bracket => MacDelimiter::Bracket, |
| token::Brace => MacDelimiter::Brace, |
| token::NoDelim => self.bug("unexpected no delimiter"), |
| }; |
| Ok((delim, tts.into())) |
| } |
| |
| /// At the bottom (top?) of the precedence hierarchy, |
| /// Parses things like parenthesized exprs, macros, `return`, etc. |
| /// |
| /// N.B., this does not parse outer attributes, and is private because it only works |
| /// correctly if called from `parse_dot_or_call_expr()`. |
| fn parse_bottom_expr(&mut self) -> PResult<'a, P<Expr>> { |
| maybe_whole_expr!(self); |
| |
| // Outer attributes are already parsed and will be |
| // added to the return value after the fact. |
| // |
| // Therefore, prevent sub-parser from parsing |
| // attributes by giving them a empty "already parsed" list. |
| let mut attrs = ThinVec::new(); |
| |
| let lo = self.span; |
| let mut hi = self.span; |
| |
| let ex: ExprKind; |
| |
| // Note: when adding new syntax here, don't forget to adjust Token::can_begin_expr(). |
| match self.token { |
| token::OpenDelim(token::Paren) => { |
| self.bump(); |
| |
| attrs.extend(self.parse_inner_attributes()?); |
| |
| // (e) is parenthesized e |
| // (e,) is a tuple with only one field, e |
| let mut es = vec![]; |
| let mut trailing_comma = false; |
| let mut recovered = false; |
| while self.token != token::CloseDelim(token::Paren) { |
| es.push(self.parse_expr()?); |
| recovered = self.expect_one_of( |
| &[], |
| &[token::Comma, token::CloseDelim(token::Paren)], |
| )?; |
| if self.eat(&token::Comma) { |
| trailing_comma = true; |
| } else { |
| trailing_comma = false; |
| break; |
| } |
| } |
| if !recovered { |
| self.bump(); |
| } |
| |
| hi = self.prev_span; |
| ex = if es.len() == 1 && !trailing_comma { |
| ExprKind::Paren(es.into_iter().nth(0).unwrap()) |
| } else { |
| ExprKind::Tup(es) |
| }; |
| } |
| token::OpenDelim(token::Brace) => { |
| return self.parse_block_expr(None, lo, BlockCheckMode::Default, attrs); |
| } |
| token::BinOp(token::Or) | token::OrOr => { |
| return self.parse_lambda_expr(attrs); |
| } |
| token::OpenDelim(token::Bracket) => { |
| self.bump(); |
| |
| attrs.extend(self.parse_inner_attributes()?); |
| |
| if self.eat(&token::CloseDelim(token::Bracket)) { |
| // Empty vector. |
| ex = ExprKind::Array(Vec::new()); |
| } else { |
| // Nonempty vector. |
| let first_expr = self.parse_expr()?; |
| if self.eat(&token::Semi) { |
| // Repeating array syntax: [ 0; 512 ] |
| let count = AnonConst { |
| id: ast::DUMMY_NODE_ID, |
| value: self.parse_expr()?, |
| }; |
| self.expect(&token::CloseDelim(token::Bracket))?; |
| ex = ExprKind::Repeat(first_expr, count); |
| } else if self.eat(&token::Comma) { |
| // Vector with two or more elements. |
| let remaining_exprs = self.parse_seq_to_end( |
| &token::CloseDelim(token::Bracket), |
| SeqSep::trailing_allowed(token::Comma), |
| |p| Ok(p.parse_expr()?) |
| )?; |
| let mut exprs = vec![first_expr]; |
| exprs.extend(remaining_exprs); |
| ex = ExprKind::Array(exprs); |
| } else { |
| // Vector with one element. |
| self.expect(&token::CloseDelim(token::Bracket))?; |
| ex = ExprKind::Array(vec![first_expr]); |
| } |
| } |
| hi = self.prev_span; |
| } |
| _ => { |
| if self.eat_lt() { |
| let (qself, path) = self.parse_qpath(PathStyle::Expr)?; |
| hi = path.span; |
| return Ok(self.mk_expr(lo.to(hi), ExprKind::Path(Some(qself), path), attrs)); |
| } |
| if self.span.rust_2018() && self.check_keyword(keywords::Async) |
| { |
| if self.is_async_block() { // check for `async {` and `async move {` |
| return self.parse_async_block(attrs); |
| } else { |
| return self.parse_lambda_expr(attrs); |
| } |
| } |
| if self.check_keyword(keywords::Move) || self.check_keyword(keywords::Static) { |
| return self.parse_lambda_expr(attrs); |
| } |
| if self.eat_keyword(keywords::If) { |
| return self.parse_if_expr(attrs); |
| } |
| if self.eat_keyword(keywords::For) { |
| let lo = self.prev_span; |
| return self.parse_for_expr(None, lo, attrs); |
| } |
| if self.eat_keyword(keywords::While) { |
| let lo = self.prev_span; |
| return self.parse_while_expr(None, lo, attrs); |
| } |
| if let Some(label) = self.eat_label() { |
| let lo = label.ident.span; |
| self.expect(&token::Colon)?; |
| if self.eat_keyword(keywords::While) { |
| return self.parse_while_expr(Some(label), lo, attrs) |
| } |
| if self.eat_keyword(keywords::For) { |
| return self.parse_for_expr(Some(label), lo, attrs) |
| } |
| if self.eat_keyword(keywords::Loop) { |
| return self.parse_loop_expr(Some(label), lo, attrs) |
| } |
| if self.token == token::OpenDelim(token::Brace) { |
| return self.parse_block_expr(Some(label), |
| lo, |
| BlockCheckMode::Default, |
| attrs); |
| } |
| let msg = "expected `while`, `for`, `loop` or `{` after a label"; |
| let mut err = self.fatal(msg); |
| err.span_label(self.span, msg); |
| return Err(err); |
| } |
| if self.eat_keyword(keywords::Loop) { |
| let lo = self.prev_span; |
| return self.parse_loop_expr(None, lo, attrs); |
| } |
| if self.eat_keyword(keywords::Continue) { |
| let label = self.eat_label(); |
| let ex = ExprKind::Continue(label); |
| let hi = self.prev_span; |
| return Ok(self.mk_expr(lo.to(hi), ex, attrs)); |
| } |
| if self.eat_keyword(keywords::Match) { |
| let match_sp = self.prev_span; |
| return self.parse_match_expr(attrs).map_err(|mut err| { |
| err.span_label(match_sp, "while parsing this match expression"); |
| err |
| }); |
| } |
| if self.eat_keyword(keywords::Unsafe) { |
| return self.parse_block_expr( |
| None, |
| lo, |
| BlockCheckMode::Unsafe(ast::UserProvided), |
| attrs); |
| } |
| if self.is_do_catch_block() { |
| let mut db = self.fatal("found removed `do catch` syntax"); |
| db.help("Following RFC #2388, the new non-placeholder syntax is `try`"); |
| return Err(db); |
| } |
| if self.is_try_block() { |
| let lo = self.span; |
| assert!(self.eat_keyword(keywords::Try)); |
| return self.parse_try_block(lo, attrs); |
| } |
| if self.eat_keyword(keywords::Return) { |
| if self.token.can_begin_expr() { |
| let e = self.parse_expr()?; |
| hi = e.span; |
| ex = ExprKind::Ret(Some(e)); |
| } else { |
| ex = ExprKind::Ret(None); |
| } |
| } else if self.eat_keyword(keywords::Break) { |
| let label = self.eat_label(); |
| let e = if self.token.can_begin_expr() |
| && !(self.token == token::OpenDelim(token::Brace) |
| && self.restrictions.contains( |
| Restrictions::NO_STRUCT_LITERAL)) { |
| Some(self.parse_expr()?) |
| } else { |
| None |
| }; |
| ex = ExprKind::Break(label, e); |
| hi = self.prev_span; |
| } else if self.eat_keyword(keywords::Yield) { |
| if self.token.can_begin_expr() { |
| let e = self.parse_expr()?; |
| hi = e.span; |
| ex = ExprKind::Yield(Some(e)); |
| } else { |
| ex = ExprKind::Yield(None); |
| } |
| } else if self.token.is_keyword(keywords::Let) { |
| // Catch this syntax error here, instead of in `parse_ident`, so |
| // that we can explicitly mention that let is not to be used as an expression |
| let mut db = self.fatal("expected expression, found statement (`let`)"); |
| db.span_label(self.span, "expected expression"); |
| db.note("variable declaration using `let` is a statement"); |
| return Err(db); |
| } else if self.token.is_path_start() { |
| let pth = self.parse_path(PathStyle::Expr)?; |
| |
| // `!`, as an operator, is prefix, so we know this isn't that |
| if self.eat(&token::Not) { |
| // MACRO INVOCATION expression |
| let (delim, tts) = self.expect_delimited_token_tree()?; |
| let hi = self.prev_span; |
| let node = Mac_ { path: pth, tts, delim }; |
| return Ok(self.mk_mac_expr(lo.to(hi), node, attrs)) |
| } |
| if self.check(&token::OpenDelim(token::Brace)) { |
| // This is a struct literal, unless we're prohibited |
| // from parsing struct literals here. |
| let prohibited = self.restrictions.contains( |
| Restrictions::NO_STRUCT_LITERAL |
| ); |
| if !prohibited { |
| return self.parse_struct_expr(lo, pth, attrs); |
| } |
| } |
| |
| hi = pth.span; |
| ex = ExprKind::Path(None, pth); |
| } else { |
| if !self.unclosed_delims.is_empty() && self.check(&token::Semi) { |
| // Don't complain about bare semicolons after unclosed braces |
| // recovery in order to keep the error count down. Fixing the |
| // delimiters will possibly also fix the bare semicolon found in |
| // expression context. For example, silence the following error: |
| // ``` |
| // error: expected expression, found `;` |
| // --> file.rs:2:13 |
| // | |
| // 2 | foo(bar(; |
| // | ^ expected expression |
| // ``` |
| self.bump(); |
| return Ok(self.mk_expr(self.span, ExprKind::Err, ThinVec::new())); |
| } |
| match self.parse_literal_maybe_minus() { |
| Ok(expr) => { |
| hi = expr.span; |
| ex = expr.node.clone(); |
| } |
| Err(mut err) => { |
| self.cancel(&mut err); |
| let msg = format!("expected expression, found {}", |
| self.this_token_descr()); |
| let mut err = self.fatal(&msg); |
| err.span_label(self.span, "expected expression"); |
| return Err(err); |
| } |
| } |
| } |
| } |
| } |
| |
| let expr = Expr { node: ex, span: lo.to(hi), id: ast::DUMMY_NODE_ID, attrs }; |
| let expr = self.maybe_recover_from_bad_qpath(expr, true)?; |
| |
| return Ok(P(expr)); |
| } |
| |
| fn parse_struct_expr(&mut self, lo: Span, pth: ast::Path, mut attrs: ThinVec<Attribute>) |
| -> PResult<'a, P<Expr>> { |
| let struct_sp = lo.to(self.prev_span); |
| self.bump(); |
| let mut fields = Vec::new(); |
| let mut base = None; |
| |
| attrs.extend(self.parse_inner_attributes()?); |
| |
| while self.token != token::CloseDelim(token::Brace) { |
| if self.eat(&token::DotDot) { |
| let exp_span = self.prev_span; |
| match self.parse_expr() { |
| Ok(e) => { |
| base = Some(e); |
| } |
| Err(mut e) => { |
| e.emit(); |
| self.recover_stmt(); |
| } |
| } |
| if self.token == token::Comma { |
| let mut err = self.sess.span_diagnostic.mut_span_err( |
| exp_span.to(self.prev_span), |
| "cannot use a comma after the base struct", |
| ); |
| err.span_suggestion_short( |
| self.span, |
| "remove this comma", |
| String::new(), |
| Applicability::MachineApplicable |
| ); |
| err.note("the base struct must always be the last field"); |
| err.emit(); |
| self.recover_stmt(); |
| } |
| break; |
| } |
| |
| let mut recovery_field = None; |
| if let token::Ident(ident, _) = self.token { |
| if !self.token.is_reserved_ident() && self.look_ahead(1, |t| *t == token::Colon) { |
| // Use in case of error after field-looking code: `S { foo: () with a }` |
| let mut ident = ident.clone(); |
| ident.span = self.span; |
| recovery_field = Some(ast::Field { |
| ident, |
| span: self.span, |
| expr: self.mk_expr(self.span, ExprKind::Err, ThinVec::new()), |
| is_shorthand: false, |
| attrs: ThinVec::new(), |
| }); |
| } |
| } |
| let mut parsed_field = None; |
| match self.parse_field() { |
| Ok(f) => parsed_field = Some(f), |
| Err(mut e) => { |
| e.span_label(struct_sp, "while parsing this struct"); |
| e.emit(); |
| |
| // If the next token is a comma, then try to parse |
| // what comes next as additional fields, rather than |
| // bailing out until next `}`. |
| if self.token != token::Comma { |
| self.recover_stmt_(SemiColonMode::Comma, BlockMode::Ignore); |
| if self.token != token::Comma { |
| break; |
| } |
| } |
| } |
| } |
| |
| match self.expect_one_of(&[token::Comma], |
| &[token::CloseDelim(token::Brace)]) { |
| Ok(_) => if let Some(f) = parsed_field.or(recovery_field) { |
| // only include the field if there's no parse error for the field name |
| fields.push(f); |
| } |
| Err(mut e) => { |
| if let Some(f) = recovery_field { |
| fields.push(f); |
| } |
| e.span_label(struct_sp, "while parsing this struct"); |
| e.emit(); |
| self.recover_stmt_(SemiColonMode::Comma, BlockMode::Ignore); |
| self.eat(&token::Comma); |
| } |
| } |
| } |
| |
| let span = lo.to(self.span); |
| self.expect(&token::CloseDelim(token::Brace))?; |
| return Ok(self.mk_expr(span, ExprKind::Struct(pth, fields, base), attrs)); |
| } |
| |
| fn parse_or_use_outer_attributes(&mut self, |
| already_parsed_attrs: Option<ThinVec<Attribute>>) |
| -> PResult<'a, ThinVec<Attribute>> { |
| if let Some(attrs) = already_parsed_attrs { |
| Ok(attrs) |
| } else { |
| self.parse_outer_attributes().map(|a| a.into()) |
| } |
| } |
| |
| /// Parses a block or unsafe block. |
| fn parse_block_expr(&mut self, opt_label: Option<Label>, |
| lo: Span, blk_mode: BlockCheckMode, |
| outer_attrs: ThinVec<Attribute>) |
| -> PResult<'a, P<Expr>> { |
| self.expect(&token::OpenDelim(token::Brace))?; |
| |
| let mut attrs = outer_attrs; |
| attrs.extend(self.parse_inner_attributes()?); |
| |
| let blk = self.parse_block_tail(lo, blk_mode)?; |
| return Ok(self.mk_expr(blk.span, ExprKind::Block(blk, opt_label), attrs)); |
| } |
| |
| /// Parses `a.b` or `a(13)` or `a[4]` or just `a`. |
| fn parse_dot_or_call_expr(&mut self, |
| already_parsed_attrs: Option<ThinVec<Attribute>>) |
| -> PResult<'a, P<Expr>> { |
| let attrs = self.parse_or_use_outer_attributes(already_parsed_attrs)?; |
| |
| let b = self.parse_bottom_expr(); |
| let (span, b) = self.interpolated_or_expr_span(b)?; |
| self.parse_dot_or_call_expr_with(b, span, attrs) |
| } |
| |
| fn parse_dot_or_call_expr_with(&mut self, |
| e0: P<Expr>, |
| lo: Span, |
| mut attrs: ThinVec<Attribute>) |
| -> PResult<'a, P<Expr>> { |
| // Stitch the list of outer attributes onto the return value. |
| // A little bit ugly, but the best way given the current code |
| // structure |
| self.parse_dot_or_call_expr_with_(e0, lo) |
| .map(|expr| |
| expr.map(|mut expr| { |
| attrs.extend::<Vec<_>>(expr.attrs.into()); |
| expr.attrs = attrs; |
| match expr.node { |
| ExprKind::If(..) | ExprKind::IfLet(..) => { |
| if !expr.attrs.is_empty() { |
| // Just point to the first attribute in there... |
| let span = expr.attrs[0].span; |
| |
| self.span_err(span, |
| "attributes are not yet allowed on `if` \ |
| expressions"); |
| } |
| } |
| _ => {} |
| } |
| expr |
| }) |
| ) |
| } |
| |
| // Assuming we have just parsed `.`, continue parsing into an expression. |
| fn parse_dot_suffix(&mut self, self_arg: P<Expr>, lo: Span) -> PResult<'a, P<Expr>> { |
| let segment = self.parse_path_segment(PathStyle::Expr, true)?; |
| self.check_trailing_angle_brackets(&segment, token::OpenDelim(token::Paren)); |
| |
| Ok(match self.token { |
| token::OpenDelim(token::Paren) => { |
| // Method call `expr.f()` |
| let mut args = self.parse_unspanned_seq( |
| &token::OpenDelim(token::Paren), |
| &token::CloseDelim(token::Paren), |
| SeqSep::trailing_allowed(token::Comma), |
| |p| Ok(p.parse_expr()?) |
| )?; |
| args.insert(0, self_arg); |
| |
| let span = lo.to(self.prev_span); |
| self.mk_expr(span, ExprKind::MethodCall(segment, args), ThinVec::new()) |
| } |
| _ => { |
| // Field access `expr.f` |
| if let Some(args) = segment.args { |
| self.span_err(args.span(), |
| "field expressions may not have generic arguments"); |
| } |
| |
| let span = lo.to(self.prev_span); |
| self.mk_expr(span, ExprKind::Field(self_arg, segment.ident), ThinVec::new()) |
| } |
| }) |
| } |
| |
| /// This function checks if there are trailing angle brackets and produces |
| /// a diagnostic to suggest removing them. |
| /// |
| /// ```ignore (diagnostic) |
| /// let _ = vec![1, 2, 3].into_iter().collect::<Vec<usize>>>>(); |
| /// ^^ help: remove extra angle brackets |
| /// ``` |
| fn check_trailing_angle_brackets(&mut self, segment: &PathSegment, end: token::Token) { |
| // This function is intended to be invoked after parsing a path segment where there are two |
| // cases: |
| // |
| // 1. A specific token is expected after the path segment. |
| // eg. `x.foo(`, `x.foo::<u32>(` (parenthesis - method call), |
| // `Foo::`, or `Foo::<Bar>::` (mod sep - continued path). |
| // 2. No specific token is expected after the path segment. |
| // eg. `x.foo` (field access) |
| // |
| // This function is called after parsing `.foo` and before parsing the token `end` (if |
| // present). This includes any angle bracket arguments, such as `.foo::<u32>` or |
| // `Foo::<Bar>`. |
| |
| // We only care about trailing angle brackets if we previously parsed angle bracket |
| // arguments. This helps stop us incorrectly suggesting that extra angle brackets be |
| // removed in this case: |
| // |
| // `x.foo >> (3)` (where `x.foo` is a `u32` for example) |
| // |
| // This case is particularly tricky as we won't notice it just looking at the tokens - |
| // it will appear the same (in terms of upcoming tokens) as below (since the `::<u32>` will |
| // have already been parsed): |
| // |
| // `x.foo::<u32>>>(3)` |
| let parsed_angle_bracket_args = segment.args |
| .as_ref() |
| .map(|args| args.is_angle_bracketed()) |
| .unwrap_or(false); |
| |
| debug!( |
| "check_trailing_angle_brackets: parsed_angle_bracket_args={:?}", |
| parsed_angle_bracket_args, |
| ); |
| if !parsed_angle_bracket_args { |
| return; |
| } |
| |
| // Keep the span at the start so we can highlight the sequence of `>` characters to be |
| // removed. |
| let lo = self.span; |
| |
| // We need to look-ahead to see if we have `>` characters without moving the cursor forward |
| // (since we might have the field access case and the characters we're eating are |
| // actual operators and not trailing characters - ie `x.foo >> 3`). |
| let mut position = 0; |
| |
| // We can encounter `>` or `>>` tokens in any order, so we need to keep track of how |
| // many of each (so we can correctly pluralize our error messages) and continue to |
| // advance. |
| let mut number_of_shr = 0; |
| let mut number_of_gt = 0; |
| while self.look_ahead(position, |t| { |
| trace!("check_trailing_angle_brackets: t={:?}", t); |
| if *t == token::BinOp(token::BinOpToken::Shr) { |
| number_of_shr += 1; |
| true |
| } else if *t == token::Gt { |
| number_of_gt += 1; |
| true |
| } else { |
| false |
| } |
| }) { |
| position += 1; |
| } |
| |
| // If we didn't find any trailing `>` characters, then we have nothing to error about. |
| debug!( |
| "check_trailing_angle_brackets: number_of_gt={:?} number_of_shr={:?}", |
| number_of_gt, number_of_shr, |
| ); |
| if number_of_gt < 1 && number_of_shr < 1 { |
| return; |
| } |
| |
| // Finally, double check that we have our end token as otherwise this is the |
| // second case. |
| if self.look_ahead(position, |t| { |
| trace!("check_trailing_angle_brackets: t={:?}", t); |
| *t == end |
| }) { |
| // Eat from where we started until the end token so that parsing can continue |
| // as if we didn't have those extra angle brackets. |
| self.eat_to_tokens(&[&end]); |
| let span = lo.until(self.span); |
| |
| let plural = number_of_gt > 1 || number_of_shr >= 1; |
| self.diagnostic() |
| .struct_span_err( |
| span, |
| &format!("unmatched angle bracket{}", if plural { "s" } else { "" }), |
| ) |
| .span_suggestion( |
| span, |
| &format!("remove extra angle bracket{}", if plural { "s" } else { "" }), |
| String::new(), |
| Applicability::MachineApplicable, |
| ) |
| .emit(); |
| } |
| } |
| |
| fn parse_dot_or_call_expr_with_(&mut self, e0: P<Expr>, lo: Span) -> PResult<'a, P<Expr>> { |
| let mut e = e0; |
| let mut hi; |
| loop { |
| // expr? |
| while self.eat(&token::Question) { |
| let hi = self.prev_span; |
| e = self.mk_expr(lo.to(hi), ExprKind::Try(e), ThinVec::new()); |
| } |
| |
| // expr.f |
| if self.eat(&token::Dot) { |
| match self.token { |
| token::Ident(..) => { |
| e = self.parse_dot_suffix(e, lo)?; |
| } |
| token::Literal(token::Integer(name), _) => { |
| let span = self.span; |
| self.bump(); |
| let field = ExprKind::Field(e, Ident::new(name, span)); |
| e = self.mk_expr(lo.to(span), field, ThinVec::new()); |
| } |
| token::Literal(token::Float(n), _suf) => { |
| self.bump(); |
| let fstr = n.as_str(); |
| let mut err = self.diagnostic() |
| .struct_span_err(self.prev_span, &format!("unexpected token: `{}`", n)); |
| err.span_label(self.prev_span, "unexpected token"); |
| if fstr.chars().all(|x| "0123456789.".contains(x)) { |
| let float = match fstr.parse::<f64>().ok() { |
| Some(f) => f, |
| None => continue, |
| }; |
| let sugg = pprust::to_string(|s| { |
| use crate::print::pprust::PrintState; |
| s.popen()?; |
| s.print_expr(&e)?; |
| s.s.word( ".")?; |
| s.print_usize(float.trunc() as usize)?; |
| s.pclose()?; |
| s.s.word(".")?; |
| s.s.word(fstr.splitn(2, ".").last().unwrap().to_string()) |
| }); |
| err.span_suggestion( |
| lo.to(self.prev_span), |
| "try parenthesizing the first index", |
| sugg, |
| Applicability::MachineApplicable |
| ); |
| } |
| return Err(err); |
| |
| } |
| _ => { |
| // FIXME Could factor this out into non_fatal_unexpected or something. |
| let actual = self.this_token_to_string(); |
| self.span_err(self.span, &format!("unexpected token: `{}`", actual)); |
| } |
| } |
| continue; |
| } |
| if self.expr_is_complete(&e) { break; } |
| match self.token { |
| // expr(...) |
| token::OpenDelim(token::Paren) => { |
| let es = self.parse_unspanned_seq( |
| &token::OpenDelim(token::Paren), |
| &token::CloseDelim(token::Paren), |
| SeqSep::trailing_allowed(token::Comma), |
| |p| Ok(p.parse_expr()?) |
| )?; |
| hi = self.prev_span; |
| |
| let nd = self.mk_call(e, es); |
| e = self.mk_expr(lo.to(hi), nd, ThinVec::new()); |
| } |
| |
| // expr[...] |
| // Could be either an index expression or a slicing expression. |
| token::OpenDelim(token::Bracket) => { |
| self.bump(); |
| let ix = self.parse_expr()?; |
| hi = self.span; |
| self.expect(&token::CloseDelim(token::Bracket))?; |
| let index = self.mk_index(e, ix); |
| e = self.mk_expr(lo.to(hi), index, ThinVec::new()) |
| } |
| _ => return Ok(e) |
| } |
| } |
| return Ok(e); |
| } |
| |
| crate fn process_potential_macro_variable(&mut self) { |
| let (token, span) = match self.token { |
| token::Dollar if self.span.ctxt() != syntax_pos::hygiene::SyntaxContext::empty() && |
| self.look_ahead(1, |t| t.is_ident()) => { |
| self.bump(); |
| let name = match self.token { |
| token::Ident(ident, _) => ident, |
| _ => unreachable!() |
| }; |
| let mut err = self.fatal(&format!("unknown macro variable `{}`", name)); |
| err.span_label(self.span, "unknown macro variable"); |
| err.emit(); |
| self.bump(); |
| return |
| } |
| token::Interpolated(ref nt) => { |
| self.meta_var_span = Some(self.span); |
| // Interpolated identifier and lifetime tokens are replaced with usual identifier |
| // and lifetime tokens, so the former are never encountered during normal parsing. |
| match **nt { |
| token::NtIdent(ident, is_raw) => (token::Ident(ident, is_raw), ident.span), |
| token::NtLifetime(ident) => (token::Lifetime(ident), ident.span), |
| _ => return, |
| } |
| } |
| _ => return, |
| }; |
| self.token = token; |
| self.span = span; |
| } |
| |
| /// Parses a single token tree from the input. |
| crate fn parse_token_tree(&mut self) -> TokenTree { |
| match self.token { |
| token::OpenDelim(..) => { |
| let frame = mem::replace(&mut self.token_cursor.frame, |
| self.token_cursor.stack.pop().unwrap()); |
| self.span = frame.span.entire(); |
| self.bump(); |
| TokenTree::Delimited( |
| frame.span, |
| frame.delim, |
| frame.tree_cursor.stream.into(), |
| ) |
| }, |
| token::CloseDelim(_) | token::Eof => unreachable!(), |
| _ => { |
| let (token, span) = (mem::replace(&mut self.token, token::Whitespace), self.span); |
| self.bump(); |
| TokenTree::Token(span, token) |
| } |
| } |
| } |
| |
| // parse a stream of tokens into a list of TokenTree's, |
| // up to EOF. |
| pub fn parse_all_token_trees(&mut self) -> PResult<'a, Vec<TokenTree>> { |
| let mut tts = Vec::new(); |
| while self.token != token::Eof { |
| tts.push(self.parse_token_tree()); |
| } |
| Ok(tts) |
| } |
| |
| pub fn parse_tokens(&mut self) -> TokenStream { |
| let mut result = Vec::new(); |
| loop { |
| match self.token { |
| token::Eof | token::CloseDelim(..) => break, |
| _ => result.push(self.parse_token_tree().into()), |
| } |
| } |
| TokenStream::new(result) |
| } |
| |
| /// Parse a prefix-unary-operator expr |
| fn parse_prefix_expr(&mut self, |
| already_parsed_attrs: Option<ThinVec<Attribute>>) |
| -> PResult<'a, P<Expr>> { |
| let attrs = self.parse_or_use_outer_attributes(already_parsed_attrs)?; |
| let lo = self.span; |
| // Note: when adding new unary operators, don't forget to adjust Token::can_begin_expr() |
| let (hi, ex) = match self.token { |
| token::Not => { |
| self.bump(); |
| let e = self.parse_prefix_expr(None); |
| let (span, e) = self.interpolated_or_expr_span(e)?; |
| (lo.to(span), self.mk_unary(UnOp::Not, e)) |
| } |
| // Suggest `!` for bitwise negation when encountering a `~` |
| token::Tilde => { |
| self.bump(); |
| let e = self.parse_prefix_expr(None); |
| let (span, e) = self.interpolated_or_expr_span(e)?; |
| let span_of_tilde = lo; |
| let mut err = self.diagnostic() |
| .struct_span_err(span_of_tilde, "`~` cannot be used as a unary operator"); |
| err.span_suggestion_short( |
| span_of_tilde, |
| "use `!` to perform bitwise negation", |
| "!".to_owned(), |
| Applicability::MachineApplicable |
| ); |
| err.emit(); |
| (lo.to(span), self.mk_unary(UnOp::Not, e)) |
| } |
| token::BinOp(token::Minus) => { |
| self.bump(); |
| let e = self.parse_prefix_expr(None); |
| let (span, e) = self.interpolated_or_expr_span(e)?; |
| (lo.to(span), self.mk_unary(UnOp::Neg, e)) |
| } |
| token::BinOp(token::Star) => { |
| self.bump(); |
| let e = self.parse_prefix_expr(None); |
| let (span, e) = self.interpolated_or_expr_span(e)?; |
| (lo.to(span), self.mk_unary(UnOp::Deref, e)) |
| } |
| token::BinOp(token::And) | token::AndAnd => { |
| self.expect_and()?; |
| let m = self.parse_mutability(); |
| let e = self.parse_prefix_expr(None); |
| let (span, e) = self.interpolated_or_expr_span(e)?; |
| (lo.to(span), ExprKind::AddrOf(m, e)) |
| } |
| token::Ident(..) if self.token.is_keyword(keywords::In) => { |
| self.bump(); |
| let place = self.parse_expr_res( |
| Restrictions::NO_STRUCT_LITERAL, |
| None, |
| )?; |
| let blk = self.parse_block()?; |
| let span = blk.span; |
| let blk_expr = self.mk_expr(span, ExprKind::Block(blk, None), ThinVec::new()); |
| (lo.to(span), ExprKind::ObsoleteInPlace(place, blk_expr)) |
| } |
| token::Ident(..) if self.token.is_keyword(keywords::Box) => { |
| self.bump(); |
| let e = self.parse_prefix_expr(None); |
| let (span, e) = self.interpolated_or_expr_span(e)?; |
| (lo.to(span), ExprKind::Box(e)) |
| } |
| token::Ident(..) if self.token.is_ident_named("not") => { |
| // `not` is just an ordinary identifier in Rust-the-language, |
| // but as `rustc`-the-compiler, we can issue clever diagnostics |
| // for confused users who really want to say `!` |
| let token_cannot_continue_expr = |t: &token::Token| match *t { |
| // These tokens can start an expression after `!`, but |
| // can't continue an expression after an ident |
| token::Ident(ident, is_raw) => token::ident_can_begin_expr(ident, is_raw), |
| token::Literal(..) | token::Pound => true, |
| token::Interpolated(ref nt) => match **nt { |
| token::NtIdent(..) | token::NtExpr(..) | |
| token::NtBlock(..) | token::NtPath(..) => true, |
| _ => false, |
| }, |
| _ => false |
| }; |
| let cannot_continue_expr = self.look_ahead(1, token_cannot_continue_expr); |
| if cannot_continue_expr { |
| self.bump(); |
| // Emit the error ... |
| let mut err = self.diagnostic() |
| .struct_span_err(self.span, |
| &format!("unexpected {} after identifier", |
| self.this_token_descr())); |
| // span the `not` plus trailing whitespace to avoid |
| // trailing whitespace after the `!` in our suggestion |
| let to_replace = self.sess.source_map() |
| .span_until_non_whitespace(lo.to(self.span)); |
| err.span_suggestion_short( |
| to_replace, |
| "use `!` to perform logical negation", |
| "!".to_owned(), |
| Applicability::MachineApplicable |
| ); |
| err.emit(); |
| // —and recover! (just as if we were in the block |
| // for the `token::Not` arm) |
| let e = self.parse_prefix_expr(None); |
| let (span, e) = self.interpolated_or_expr_span(e)?; |
| (lo.to(span), self.mk_unary(UnOp::Not, e)) |
| } else { |
| return self.parse_dot_or_call_expr(Some(attrs)); |
| } |
| } |
| _ => { return self.parse_dot_or_call_expr(Some(attrs)); } |
| }; |
| return Ok(self.mk_expr(lo.to(hi), ex, attrs)); |
| } |
| |
| /// Parses an associative expression. |
| /// |
| /// This parses an expression accounting for associativity and precedence of the operators in |
| /// the expression. |
| #[inline] |
| fn parse_assoc_expr(&mut self, |
| already_parsed_attrs: Option<ThinVec<Attribute>>) |
| -> PResult<'a, P<Expr>> { |
| self.parse_assoc_expr_with(0, already_parsed_attrs.into()) |
| } |
| |
| /// Parses an associative expression with operators of at least `min_prec` precedence. |
| fn parse_assoc_expr_with(&mut self, |
| min_prec: usize, |
| lhs: LhsExpr) |
| -> PResult<'a, P<Expr>> { |
| let mut lhs = if let LhsExpr::AlreadyParsed(expr) = lhs { |
| expr |
| } else { |
| let attrs = match lhs { |
| LhsExpr::AttributesParsed(attrs) => Some(attrs), |
| _ => None, |
| }; |
| if [token::DotDot, token::DotDotDot, token::DotDotEq].contains(&self.token) { |
| return self.parse_prefix_range_expr(attrs); |
| } else { |
| self.parse_prefix_expr(attrs)? |
| } |
| }; |
| |
| if self.expr_is_complete(&lhs) { |
| // Semi-statement forms are odd. See https://github.com/rust-lang/rust/issues/29071 |
| return Ok(lhs); |
| } |
| self.expected_tokens.push(TokenType::Operator); |
| while let Some(op) = AssocOp::from_token(&self.token) { |
| |
| // Adjust the span for interpolated LHS to point to the `$lhs` token and not to what |
| // it refers to. Interpolated identifiers are unwrapped early and never show up here |
| // as `PrevTokenKind::Interpolated` so if LHS is a single identifier we always process |
| // it as "interpolated", it doesn't change the answer for non-interpolated idents. |
| let lhs_span = match (self.prev_token_kind, &lhs.node) { |
| (PrevTokenKind::Interpolated, _) => self.prev_span, |
| (PrevTokenKind::Ident, &ExprKind::Path(None, ref path)) |
| if path.segments.len() == 1 => self.prev_span, |
| _ => lhs.span, |
| }; |
| |
| let cur_op_span = self.span; |
| let restrictions = if op.is_assign_like() { |
| self.restrictions & Restrictions::NO_STRUCT_LITERAL |
| } else { |
| self.restrictions |
| }; |
| if op.precedence() < min_prec { |
| break; |
| } |
| // Check for deprecated `...` syntax |
| if self.token == token::DotDotDot && op == AssocOp::DotDotEq { |
| self.err_dotdotdot_syntax(self.span); |
| } |
| |
| self.bump(); |
| if op.is_comparison() { |
| self.check_no_chained_comparison(&lhs, &op); |
| } |
| // Special cases: |
| if op == AssocOp::As { |
| lhs = self.parse_assoc_op_cast(lhs, lhs_span, ExprKind::Cast)?; |
| continue |
| } else if op == AssocOp::Colon { |
| lhs = match self.parse_assoc_op_cast(lhs, lhs_span, ExprKind::Type) { |
| Ok(lhs) => lhs, |
| Err(mut err) => { |
| err.span_label(self.span, |
| "expecting a type here because of type ascription"); |
| let cm = self.sess.source_map(); |
| let cur_pos = cm.lookup_char_pos(self.span.lo()); |
| let op_pos = cm.lookup_char_pos(cur_op_span.hi()); |
| if cur_pos.line != op_pos.line { |
| err.span_suggestion( |
| cur_op_span, |
| "try using a semicolon", |
| ";".to_string(), |
| Applicability::MaybeIncorrect // speculative |
| ); |
| } |
| return Err(err); |
| } |
| }; |
| continue |
| } else if op == AssocOp::DotDot || op == AssocOp::DotDotEq { |
| // If we didn’t have to handle `x..`/`x..=`, it would be pretty easy to |
| // generalise it to the Fixity::None code. |
| // |
| // We have 2 alternatives here: `x..y`/`x..=y` and `x..`/`x..=` The other |
| // two variants are handled with `parse_prefix_range_expr` call above. |
| let rhs = if self.is_at_start_of_range_notation_rhs() { |
| Some(self.parse_assoc_expr_with(op.precedence() + 1, |
| LhsExpr::NotYetParsed)?) |
| } else { |
| None |
| }; |
| let (lhs_span, rhs_span) = (lhs.span, if let Some(ref x) = rhs { |
| x.span |
| } else { |
| cur_op_span |
| }); |
| let limits = if op == AssocOp::DotDot { |
| RangeLimits::HalfOpen |
| } else { |
| RangeLimits::Closed |
| }; |
| |
| let r = self.mk_range(Some(lhs), rhs, limits)?; |
| lhs = self.mk_expr(lhs_span.to(rhs_span), r, ThinVec::new()); |
| break |
| } |
| |
| let rhs = match op.fixity() { |
| Fixity::Right => self.with_res( |
| restrictions - Restrictions::STMT_EXPR, |
| |this| { |
| this.parse_assoc_expr_with(op.precedence(), |
| LhsExpr::NotYetParsed) |
| }), |
| Fixity::Left => self.with_res( |
| restrictions - Restrictions::STMT_EXPR, |
| |this| { |
| this.parse_assoc_expr_with(op.precedence() + 1, |
| LhsExpr::NotYetParsed) |
| }), |
| // We currently have no non-associative operators that are not handled above by |
| // the special cases. The code is here only for future convenience. |
| Fixity::None => self.with_res( |
| restrictions - Restrictions::STMT_EXPR, |
| |this| { |
| this.parse_assoc_expr_with(op.precedence() + 1, |
| LhsExpr::NotYetParsed) |
| }), |
| }?; |
| |
| // Make sure that the span of the parent node is larger than the span of lhs and rhs, |
| // including the attributes. |
| let lhs_span = lhs |
| .attrs |
| .iter() |
| .filter(|a| a.style == AttrStyle::Outer) |
| .next() |
| .map_or(lhs_span, |a| a.span); |
| let span = lhs_span.to(rhs.span); |
| lhs = match op { |
| AssocOp::Add | AssocOp::Subtract | AssocOp::Multiply | AssocOp::Divide | |
| AssocOp::Modulus | AssocOp::LAnd | AssocOp::LOr | AssocOp::BitXor | |
| AssocOp::BitAnd | AssocOp::BitOr | AssocOp::ShiftLeft | AssocOp::ShiftRight | |
| AssocOp::Equal | AssocOp::Less | AssocOp::LessEqual | AssocOp::NotEqual | |
| AssocOp::Greater | AssocOp::GreaterEqual => { |
| let ast_op = op.to_ast_binop().unwrap(); |
| let binary = self.mk_binary(source_map::respan(cur_op_span, ast_op), lhs, rhs); |
| self.mk_expr(span, binary, ThinVec::new()) |
| } |
| AssocOp::Assign => |
| self.mk_expr(span, ExprKind::Assign(lhs, rhs), ThinVec::new()), |
| AssocOp::ObsoleteInPlace => |
| self.mk_expr(span, ExprKind::ObsoleteInPlace(lhs, rhs), ThinVec::new()), |
| AssocOp::AssignOp(k) => { |
| let aop = match k { |
| token::Plus => BinOpKind::Add, |
| token::Minus => BinOpKind::Sub, |
| token::Star => BinOpKind::Mul, |
| token::Slash => BinOpKind::Div, |
| token::Percent => BinOpKind::Rem, |
| token::Caret => BinOpKind::BitXor, |
| token::And => BinOpKind::BitAnd, |
| token::Or => BinOpKind::BitOr, |
| token::Shl => BinOpKind::Shl, |
| token::Shr => BinOpKind::Shr, |
| }; |
| let aopexpr = self.mk_assign_op(source_map::respan(cur_op_span, aop), lhs, rhs); |
| self.mk_expr(span, aopexpr, ThinVec::new()) |
| } |
| AssocOp::As | AssocOp::Colon | AssocOp::DotDot | AssocOp::DotDotEq => { |
| self.bug("AssocOp should have been handled by special case") |
| } |
| }; |
| |
| if op.fixity() == Fixity::None { break } |
| } |
| Ok(lhs) |
| } |
| |
| fn parse_assoc_op_cast(&mut self, lhs: P<Expr>, lhs_span: Span, |
| expr_kind: fn(P<Expr>, P<Ty>) -> ExprKind) |
| -> PResult<'a, P<Expr>> { |
| let mk_expr = |this: &mut Self, rhs: P<Ty>| { |
| this.mk_expr(lhs_span.to(rhs.span), expr_kind(lhs, rhs), ThinVec::new()) |
| }; |
| |
| // Save the state of the parser before parsing type normally, in case there is a |
| // LessThan comparison after this cast. |
| let parser_snapshot_before_type = self.clone(); |
| match self.parse_ty_no_plus() { |
| Ok(rhs) => { |
| Ok(mk_expr(self, rhs)) |
| } |
| Err(mut type_err) => { |
| // Rewind to before attempting to parse the type with generics, to recover |
| // from situations like `x as usize < y` in which we first tried to parse |
| // `usize < y` as a type with generic arguments. |
| let parser_snapshot_after_type = self.clone(); |
| mem::replace(self, parser_snapshot_before_type); |
| |
| match self.parse_path(PathStyle::Expr) { |
| Ok(path) => { |
| let (op_noun, op_verb) = match self.token { |
| token::Lt => ("comparison", "comparing"), |
| token::BinOp(token::Shl) => ("shift", "shifting"), |
| _ => { |
| // We can end up here even without `<` being the next token, for |
| // example because `parse_ty_no_plus` returns `Err` on keywords, |
| // but `parse_path` returns `Ok` on them due to error recovery. |
| // Return original error and parser state. |
| mem::replace(self, parser_snapshot_after_type); |
| return Err(type_err); |
| } |
| }; |
| |
| // Successfully parsed the type path leaving a `<` yet to parse. |
| type_err.cancel(); |
| |
| // Report non-fatal diagnostics, keep `x as usize` as an expression |
| // in AST and continue parsing. |
| let msg = format!("`<` is interpreted as a start of generic \ |
| arguments for `{}`, not a {}", path, op_noun); |
| let mut err = self.sess.span_diagnostic.struct_span_err(self.span, &msg); |
| err.span_label(self.look_ahead_span(1).to(parser_snapshot_after_type.span), |
| "interpreted as generic arguments"); |
| err.span_label(self.span, format!("not interpreted as {}", op_noun)); |
| |
| let expr = mk_expr(self, P(Ty { |
| span: path.span, |
| node: TyKind::Path(None, path), |
| id: ast::DUMMY_NODE_ID |
| })); |
| |
| let expr_str = self.sess.source_map().span_to_snippet(expr.span) |
| .unwrap_or_else(|_| pprust::expr_to_string(&expr)); |
| err.span_suggestion( |
| expr.span, |
| &format!("try {} the cast value", op_verb), |
| format!("({})", expr_str), |
| Applicability::MachineApplicable |
| ); |
| err.emit(); |
| |
| Ok(expr) |
| } |
| Err(mut path_err) => { |
| // Couldn't parse as a path, return original error and parser state. |
| path_err.cancel(); |
| mem::replace(self, parser_snapshot_after_type); |
| Err(type_err) |
| } |
| } |
| } |
| } |
| } |
| |
| /// Produce an error if comparison operators are chained (RFC #558). |
| /// We only need to check lhs, not rhs, because all comparison ops |
| /// have same precedence and are left-associative |
| fn check_no_chained_comparison(&mut self, lhs: &Expr, outer_op: &AssocOp) { |
| debug_assert!(outer_op.is_comparison(), |
| "check_no_chained_comparison: {:?} is not comparison", |
| outer_op); |
| match lhs.node { |
| ExprKind::Binary(op, _, _) if op.node.is_comparison() => { |
| // respan to include both operators |
| let op_span = op.span.to(self.span); |
| let mut err = self.diagnostic().struct_span_err(op_span, |
| "chained comparison operators require parentheses"); |
| if op.node == BinOpKind::Lt && |
| *outer_op == AssocOp::Less || // Include `<` to provide this recommendation |
| *outer_op == AssocOp::Greater // even in a case like the following: |
| { // Foo<Bar<Baz<Qux, ()>>> |
| err.help( |
| "use `::<...>` instead of `<...>` if you meant to specify type arguments"); |
| err.help("or use `(...)` if you meant to specify fn arguments"); |
| } |
| err.emit(); |
| } |
| _ => {} |
| } |
| } |
| |
| /// Parse prefix-forms of range notation: `..expr`, `..`, `..=expr` |
| fn parse_prefix_range_expr(&mut self, |
| already_parsed_attrs: Option<ThinVec<Attribute>>) |
| -> PResult<'a, P<Expr>> { |
| // Check for deprecated `...` syntax |
| if self.token == token::DotDotDot { |
| self.err_dotdotdot_syntax(self.span); |
| } |
| |
| debug_assert!([token::DotDot, token::DotDotDot, token::DotDotEq].contains(&self.token), |
| "parse_prefix_range_expr: token {:?} is not DotDot/DotDotEq", |
| self.token); |
| let tok = self.token.clone(); |
| let attrs = self.parse_or_use_outer_attributes(already_parsed_attrs)?; |
| let lo = self.span; |
| let mut hi = self.span; |
| self.bump(); |
| let opt_end = if self.is_at_start_of_range_notation_rhs() { |
| // RHS must be parsed with more associativity than the dots. |
| let next_prec = AssocOp::from_token(&tok).unwrap().precedence() + 1; |
| Some(self.parse_assoc_expr_with(next_prec, |
| LhsExpr::NotYetParsed) |
| .map(|x|{ |
| hi = x.span; |
| x |
| })?) |
| } else { |
| None |
| }; |
| let limits = if tok == token::DotDot { |
| RangeLimits::HalfOpen |
| } else { |
| RangeLimits::Closed |
| }; |
| |
| let r = self.mk_range(None, opt_end, limits)?; |
| Ok(self.mk_expr(lo.to(hi), r, attrs)) |
| } |
| |
| fn is_at_start_of_range_notation_rhs(&self) -> bool { |
| if self.token.can_begin_expr() { |
| // parse `for i in 1.. { }` as infinite loop, not as `for i in (1..{})`. |
| if self.token == token::OpenDelim(token::Brace) { |
| return !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL); |
| } |
| true |
| } else { |
| false |
| } |
| } |
| |
| /// Parses an `if` or `if let` expression (`if` token already eaten). |
| fn parse_if_expr(&mut self, attrs: ThinVec<Attribute>) -> PResult<'a, P<Expr>> { |
| if self.check_keyword(keywords::Let) { |
| return self.parse_if_let_expr(attrs); |
| } |
| let lo = self.prev_span; |
| let cond = self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, None)?; |
| |
| // Verify that the parsed `if` condition makes sense as a condition. If it is a block, then |
| // verify that the last statement is either an implicit return (no `;`) or an explicit |
| // return. This won't catch blocks with an explicit `return`, but that would be caught by |
| // the dead code lint. |
| if self.eat_keyword(keywords::Else) || !cond.returns() { |
| let sp = self.sess.source_map().next_point(lo); |
| let mut err = self.diagnostic() |
| .struct_span_err(sp, "missing condition for `if` statement"); |
| err.span_label(sp, "expected if condition here"); |
| return Err(err) |
| } |
| let not_block = self.token != token::OpenDelim(token::Brace); |
| let thn = self.parse_block().map_err(|mut err| { |
| if not_block { |
| err.span_label(lo, "this `if` statement has a condition, but no block"); |
| } |
| err |
| })?; |
| let mut els: Option<P<Expr>> = None; |
| let mut hi = thn.span; |
| if self.eat_keyword(keywords::Else) { |
| let elexpr = self.parse_else_expr()?; |
| hi = elexpr.span; |
| els = Some(elexpr); |
| } |
| Ok(self.mk_expr(lo.to(hi), ExprKind::If(cond, thn, els), attrs)) |
| } |
| |
| /// Parses an `if let` expression (`if` token already eaten). |
| fn parse_if_let_expr(&mut self, attrs: ThinVec<Attribute>) |
| -> PResult<'a, P<Expr>> { |
| let lo = self.prev_span; |
| self.expect_keyword(keywords::Let)?; |
| let pats = self.parse_pats()?; |
| self.expect(&token::Eq)?; |
| let expr = self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, None)?; |
| let thn = self.parse_block()?; |
| let (hi, els) = if self.eat_keyword(keywords::Else) { |
| let expr = self.parse_else_expr()?; |
| (expr.span, Some(expr)) |
| } else { |
| (thn.span, None) |
| }; |
| Ok(self.mk_expr(lo.to(hi), ExprKind::IfLet(pats, expr, thn, els), attrs)) |
| } |
| |
| /// Parses `move |args| expr`. |
| fn parse_lambda_expr(&mut self, |
| attrs: ThinVec<Attribute>) |
| -> PResult<'a, P<Expr>> |
| { |
| let lo = self.span; |
| let movability = if self.eat_keyword(keywords::Static) { |
| Movability::Static |
| } else { |
| Movability::Movable |
| }; |
| let asyncness = if self.span.rust_2018() { |
| self.parse_asyncness() |
| } else { |
| IsAsync::NotAsync |
| }; |
| let capture_clause = if self.eat_keyword(keywords::Move) { |
| CaptureBy::Value |
| } else { |
| CaptureBy::Ref |
| }; |
| let decl = self.parse_fn_block_decl()?; |
| let decl_hi = self.prev_span; |
| let body = match decl.output { |
| FunctionRetTy::Default(_) => { |
| let restrictions = self.restrictions - Restrictions::STMT_EXPR; |
| self.parse_expr_res(restrictions, None)? |
| }, |
| _ => { |
| // If an explicit return type is given, require a |
| // block to appear (RFC 968). |
| let body_lo = self.span; |
| self.parse_block_expr(None, body_lo, BlockCheckMode::Default, ThinVec::new())? |
| } |
| }; |
| |
| Ok(self.mk_expr( |
| lo.to(body.span), |
| ExprKind::Closure(capture_clause, asyncness, movability, decl, body, lo.to(decl_hi)), |
| attrs)) |
| } |
| |
| // `else` token already eaten |
| fn parse_else_expr(&mut self) -> PResult<'a, P<Expr>> { |
| if self.eat_keyword(keywords::If) { |
| return self.parse_if_expr(ThinVec::new()); |
| } else { |
| let blk = self.parse_block()?; |
| return Ok(self.mk_expr(blk.span, ExprKind::Block(blk, None), ThinVec::new())); |
| } |
| } |
| |
| /// Parse a 'for' .. 'in' expression ('for' token already eaten) |
| fn parse_for_expr(&mut self, opt_label: Option<Label>, |
| span_lo: Span, |
| mut attrs: ThinVec<Attribute>) -> PResult<'a, P<Expr>> { |
| // Parse: `for <src_pat> in <src_expr> <src_loop_block>` |
| |
| let pat = self.parse_top_level_pat()?; |
| if !self.eat_keyword(keywords::In) { |
| let in_span = self.prev_span.between(self.span); |
| let mut err = self.sess.span_diagnostic |
| .struct_span_err(in_span, "missing `in` in `for` loop"); |
| err.span_suggestion_short( |
| in_span, "try adding `in` here", " in ".into(), |
| // has been misleading, at least in the past (closed Issue #48492) |
| Applicability::MaybeIncorrect |
| ); |
| err.emit(); |
| } |
| let in_span = self.prev_span; |
| if self.eat_keyword(keywords::In) { |
| // a common typo: `for _ in in bar {}` |
| let mut err = self.sess.span_diagnostic.struct_span_err( |
| self.prev_span, |
| "expected iterable, found keyword `in`", |
| ); |
| err.span_suggestion_short( |
| in_span.until(self.prev_span), |
| "remove the duplicated `in`", |
| String::new(), |
| Applicability::MachineApplicable, |
| ); |
| err.note("if you meant to use emplacement syntax, it is obsolete (for now, anyway)"); |
| err.note("for more information on the status of emplacement syntax, see <\ |
| https://github.com/rust-lang/rust/issues/27779#issuecomment-378416911>"); |
| err.emit(); |
| } |
| let expr = self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, None)?; |
| let (iattrs, loop_block) = self.parse_inner_attrs_and_block()?; |
| attrs.extend(iattrs); |
| |
| let hi = self.prev_span; |
| Ok(self.mk_expr(span_lo.to(hi), ExprKind::ForLoop(pat, expr, loop_block, opt_label), attrs)) |
| } |
| |
| /// Parses a `while` or `while let` expression (`while` token already eaten). |
| fn parse_while_expr(&mut self, opt_label: Option<Label>, |
| span_lo: Span, |
| mut attrs: ThinVec<Attribute>) -> PResult<'a, P<Expr>> { |
| if self.token.is_keyword(keywords::Let) { |
| return self.parse_while_let_expr(opt_label, span_lo, attrs); |
| } |
| let cond = self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, None)?; |
| let (iattrs, body) = self.parse_inner_attrs_and_block()?; |
| attrs.extend(iattrs); |
| let span = span_lo.to(body.span); |
| return Ok(self.mk_expr(span, ExprKind::While(cond, body, opt_label), attrs)); |
| } |
| |
| /// Parses a `while let` expression (`while` token already eaten). |
| fn parse_while_let_expr(&mut self, opt_label: Option<Label>, |
| span_lo: Span, |
| mut attrs: ThinVec<Attribute>) -> PResult<'a, P<Expr>> { |
| self.expect_keyword(keywords::Let)?; |
| let pats = self.parse_pats()?; |
| self.expect(&token::Eq)?; |
| let expr = self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, None)?; |
| let (iattrs, body) = self.parse_inner_attrs_and_block()?; |
| attrs.extend(iattrs); |
| let span = span_lo.to(body.span); |
| return Ok(self.mk_expr(span, ExprKind::WhileLet(pats, expr, body, opt_label), attrs)); |
| } |
| |
| // parse `loop {...}`, `loop` token already eaten |
| fn parse_loop_expr(&mut self, opt_label: Option<Label>, |
| span_lo: Span, |
| mut attrs: ThinVec<Attribute>) -> PResult<'a, P<Expr>> { |
| let (iattrs, body) = self.parse_inner_attrs_and_block()?; |
| attrs.extend(iattrs); |
| let span = span_lo.to(body.span); |
| Ok(self.mk_expr(span, ExprKind::Loop(body, opt_label), attrs)) |
| } |
| |
| /// Parses an `async move {...}` expression. |
| pub fn parse_async_block(&mut self, mut attrs: ThinVec<Attribute>) |
| -> PResult<'a, P<Expr>> |
| { |
| let span_lo = self.span; |
| self.expect_keyword(keywords::Async)?; |
| let capture_clause = if self.eat_keyword(keywords::Move) { |
| CaptureBy::Value |
| } else { |
| CaptureBy::Ref |
| }; |
| let (iattrs, body) = self.parse_inner_attrs_and_block()?; |
| attrs.extend(iattrs); |
| Ok(self.mk_expr( |
| span_lo.to(body.span), |
| ExprKind::Async(capture_clause, ast::DUMMY_NODE_ID, body), attrs)) |
| } |
| |
| /// Parses a `try {...}` expression (`try` token already eaten). |
| fn parse_try_block(&mut self, span_lo: Span, mut attrs: ThinVec<Attribute>) |
| -> PResult<'a, P<Expr>> |
| { |
| let (iattrs, body) = self.parse_inner_attrs_and_block()?; |
| attrs.extend(iattrs); |
| Ok(self.mk_expr(span_lo.to(body.span), ExprKind::TryBlock(body), attrs)) |
| } |
| |
| // `match` token already eaten |
| fn parse_match_expr(&mut self, mut attrs: ThinVec<Attribute>) -> PResult<'a, P<Expr>> { |
| let match_span = self.prev_span; |
| let lo = self.prev_span; |
| let discriminant = self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, |
| None)?; |
| if let Err(mut e) = self.expect(&token::OpenDelim(token::Brace)) { |
| if self.token == token::Token::Semi { |
| e.span_suggestion_short( |
| match_span, |
| "try removing this `match`", |
| String::new(), |
| Applicability::MaybeIncorrect // speculative |
| ); |
| } |
| return Err(e) |
| } |
| attrs.extend(self.parse_inner_attributes()?); |
| |
| let mut arms: Vec<Arm> = Vec::new(); |
| while self.token != token::CloseDelim(token::Brace) { |
| match self.parse_arm() { |
| Ok(arm) => arms.push(arm), |
| Err(mut e) => { |
| // Recover by skipping to the end of the block. |
| e.emit(); |
| self.recover_stmt(); |
| let span = lo.to(self.span); |
| if self.token == token::CloseDelim(token::Brace) { |
| self.bump(); |
| } |
| return Ok(self.mk_expr(span, ExprKind::Match(discriminant, arms), attrs)); |
| } |
| } |
| } |
| let hi = self.span; |
| self.bump(); |
| return Ok(self.mk_expr(lo.to(hi), ExprKind::Match(discriminant, arms), attrs)); |
| } |
| |
| crate fn parse_arm(&mut self) -> PResult<'a, Arm> { |
| maybe_whole!(self, NtArm, |x| x); |
| |
| let attrs = self.parse_outer_attributes()?; |
| let pats = self.parse_pats()?; |
| let guard = if self.eat_keyword(keywords::If) { |
| Some(Guard::If(self.parse_expr()?)) |
| } else { |
| None |
| }; |
| let arrow_span = self.span; |
| self.expect(&token::FatArrow)?; |
| let arm_start_span = self.span; |
| |
| let expr = self.parse_expr_res(Restrictions::STMT_EXPR, None) |
| .map_err(|mut err| { |
| err.span_label(arrow_span, "while parsing the `match` arm starting here"); |
| err |
| })?; |
| |
| let require_comma = classify::expr_requires_semi_to_be_stmt(&expr) |
| && self.token != token::CloseDelim(token::Brace); |
| |
| if require_comma { |
| let cm = self.sess.source_map(); |
| self.expect_one_of(&[token::Comma], &[token::CloseDelim(token::Brace)]) |
| .map_err(|mut err| { |
| match (cm.span_to_lines(expr.span), cm.span_to_lines(arm_start_span)) { |
| (Ok(ref expr_lines), Ok(ref arm_start_lines)) |
| if arm_start_lines.lines[0].end_col == expr_lines.lines[0].end_col |
| && expr_lines.lines.len() == 2 |
| && self.token == token::FatArrow => { |
| // We check whether there's any trailing code in the parse span, |
| // if there isn't, we very likely have the following: |
| // |
| // X | &Y => "y" |
| // | -- - missing comma |
| // | | |
| // | arrow_span |
| // X | &X => "x" |
| // | - ^^ self.span |
| // | | |
| // | parsed until here as `"y" & X` |
| err.span_suggestion_short( |
| cm.next_point(arm_start_span), |
| "missing a comma here to end this `match` arm", |
| ",".to_owned(), |
| Applicability::MachineApplicable |
| ); |
| } |
| _ => { |
| err.span_label(arrow_span, |
| "while parsing the `match` arm starting here"); |
| } |
| } |
| err |
| })?; |
| } else { |
| self.eat(&token::Comma); |
| } |
| |
| Ok(ast::Arm { |
| attrs, |
| pats, |
| guard, |
| body: expr, |
| }) |
| } |
| |
| /// Parses an expression. |
| #[inline] |
| pub fn parse_expr(&mut self) -> PResult<'a, P<Expr>> { |
| self.parse_expr_res(Restrictions::empty(), None) |
| } |
| |
| /// Evaluates the closure with restrictions in place. |
| /// |
| /// Afters the closure is evaluated, restrictions are reset. |
| fn with_res<F, T>(&mut self, r: Restrictions, f: F) -> T |
| where F: FnOnce(&mut Self) -> T |
| { |
| let old = self.restrictions; |
| self.restrictions = r; |
| let r = f(self); |
| self.restrictions = old; |
| return r; |
| |
| } |
| |
| /// Parses an expression, subject to the given restrictions. |
| #[inline] |
| fn parse_expr_res(&mut self, r: Restrictions, |
| already_parsed_attrs: Option<ThinVec<Attribute>>) |
| -> PResult<'a, P<Expr>> { |
| self.with_res(r, |this| this.parse_assoc_expr(already_parsed_attrs)) |
| } |
| |
| /// Parses the RHS of a local variable declaration (e.g., '= 14;'). |
| fn parse_initializer(&mut self, skip_eq: bool) -> PResult<'a, Option<P<Expr>>> { |
| if self.eat(&token::Eq) { |
| Ok(Some(self.parse_expr()?)) |
| } else if skip_eq { |
| Ok(Some(self.parse_expr()?)) |
| } else { |
| Ok(None) |
| } |
| } |
| |
| /// Parses patterns, separated by '|' s. |
| fn parse_pats(&mut self) -> PResult<'a, Vec<P<Pat>>> { |
| // Allow a '|' before the pats (RFC 1925 + RFC 2530) |
| self.eat(&token::BinOp(token::Or)); |
| |
| let mut pats = Vec::new(); |
| loop { |
| pats.push(self.parse_top_level_pat()?); |
| |
| if self.token == token::OrOr { |
| let mut err = self.struct_span_err(self.span, |
| "unexpected token `||` after pattern"); |
| err.span_suggestion( |
| self.span, |
| "use a single `|` to specify multiple patterns", |
| "|".to_owned(), |
| Applicability::MachineApplicable |
| ); |
| err.emit(); |
| self.bump(); |
| } else if self.eat(&token::BinOp(token::Or)) { |
| // This is a No-op. Continue the loop to parse the next |
| // pattern. |
| } else { |
| return Ok(pats); |
| } |
| }; |
| } |
| |
| // Parses a parenthesized list of patterns like |
| // `()`, `(p)`, `(p,)`, `(p, q)`, or `(p, .., q)`. Returns: |
| // - a vector of the patterns that were parsed |
| // - an option indicating the index of the `..` element |
| // - a boolean indicating whether a trailing comma was present. |
| // Trailing commas are significant because (p) and (p,) are different patterns. |
| fn parse_parenthesized_pat_list(&mut self) -> PResult<'a, (Vec<P<Pat>>, Option<usize>, bool)> { |
| self.expect(&token::OpenDelim(token::Paren))?; |
| let result = self.parse_pat_list()?; |
| self.expect(&token::CloseDelim(token::Paren))?; |
| Ok(result) |
| } |
| |
| fn parse_pat_list(&mut self) -> PResult<'a, (Vec<P<Pat>>, Option<usize>, bool)> { |
| let mut fields = Vec::new(); |
| let mut ddpos = None; |
| let mut trailing_comma = false; |
| loop { |
| if self.eat(&token::DotDot) { |
| if ddpos.is_none() { |
| ddpos = Some(fields.len()); |
| } else { |
| // Emit a friendly error, ignore `..` and continue parsing |
| self.struct_span_err( |
| self.prev_span, |
| "`..` can only be used once per tuple or tuple struct pattern", |
| ) |
| .span_label(self.prev_span, "can only be used once per pattern") |
| .emit(); |
| } |
| } else if !self.check(&token::CloseDelim(token::Paren)) { |
| fields.push(self.parse_pat(None)?); |
| } else { |
| break |
| } |
| |
| trailing_comma = self.eat(&token::Comma); |
| if !trailing_comma { |
| break |
| } |
| } |
| |
| if ddpos == Some(fields.len()) && trailing_comma { |
| // `..` needs to be followed by `)` or `, pat`, `..,)` is disallowed. |
| let msg = "trailing comma is not permitted after `..`"; |
| self.struct_span_err(self.prev_span, msg) |
| .span_label(self.prev_span, msg) |
| .emit(); |
| } |
| |
| Ok((fields, ddpos, trailing_comma)) |
| } |
| |
| fn parse_pat_vec_elements( |
| &mut self, |
| ) -> PResult<'a, (Vec<P<Pat>>, Option<P<Pat>>, Vec<P<Pat>>)> { |
| let mut before = Vec::new(); |
| let mut slice = None; |
| let mut after = Vec::new(); |
| let mut first = true; |
| let mut before_slice = true; |
| |
| while self.token != token::CloseDelim(token::Bracket) { |
| if first { |
| first = false; |
| } else { |
| self.expect(&token::Comma)?; |
| |
| if self.token == token::CloseDelim(token::Bracket) |
| && (before_slice || !after.is_empty()) { |
| break |
| } |
| } |
| |
| if before_slice { |
| if self.eat(&token::DotDot) { |
| |
| if self.check(&token::Comma) || |
| self.check(&token::CloseDelim(token::Bracket)) { |
| slice = Some(P(Pat { |
| id: ast::DUMMY_NODE_ID, |
| node: PatKind::Wild, |
| span: self.prev_span, |
| })); |
| before_slice = false; |
| } |
| continue |
| } |
| } |
| |
| let subpat = self.parse_pat(None)?; |
| if before_slice && self.eat(&token::DotDot) { |
| slice = Some(subpat); |
| before_slice = false; |
| } else if before_slice { |
| before.push(subpat); |
| } else { |
| after.push(subpat); |
| } |
| } |
| |
| Ok((before, slice, after)) |
| } |
| |
| fn parse_pat_field( |
| &mut self, |
| lo: Span, |
| attrs: Vec<Attribute> |
| ) -> PResult<'a, source_map::Spanned<ast::FieldPat>> { |
| // Check if a colon exists one ahead. This means we're parsing a fieldname. |
| let hi; |
| let (subpat, fieldname, is_shorthand) = if self.look_ahead(1, |t| t == &token::Colon) { |
| // Parsing a pattern of the form "fieldname: pat" |
| let fieldname = self.parse_field_name()?; |
| self.bump(); |
| let pat = self.parse_pat(None)?; |
| hi = pat.span; |
| (pat, fieldname, false) |
| } else { |
| // Parsing a pattern of the form "(box) (ref) (mut) fieldname" |
| let is_box = self.eat_keyword(keywords::Box); |
| let boxed_span = self.span; |
| let is_ref = self.eat_keyword(keywords::Ref); |
| let is_mut = self.eat_keyword(keywords::Mut); |
| let fieldname = self.parse_ident()?; |
| hi = self.prev_span; |
| |
| let bind_type = match (is_ref, is_mut) { |
| (true, true) => BindingMode::ByRef(Mutability::Mutable), |
| (true, false) => BindingMode::ByRef(Mutability::Immutable), |
| (false, true) => BindingMode::ByValue(Mutability::Mutable), |
| (false, false) => BindingMode::ByValue(Mutability::Immutable), |
| }; |
| let fieldpat = P(Pat { |
| id: ast::DUMMY_NODE_ID, |
| node: PatKind::Ident(bind_type, fieldname, None), |
| span: boxed_span.to(hi), |
| }); |
| |
| let subpat = if is_box { |
| P(Pat { |
| id: ast::DUMMY_NODE_ID, |
| node: PatKind::Box(fieldpat), |
| span: lo.to(hi), |
| }) |
| } else { |
| fieldpat |
| }; |
| (subpat, fieldname, true) |
| }; |
| |
| Ok(source_map::Spanned { |
| span: lo.to(hi), |
| node: ast::FieldPat { |
| ident: fieldname, |
| pat: subpat, |
| is_shorthand, |
| attrs: attrs.into(), |
| } |
| }) |
| } |
| |
| /// Parses the fields of a struct-like pattern. |
| fn parse_pat_fields(&mut self) -> PResult<'a, (Vec<source_map::Spanned<ast::FieldPat>>, bool)> { |
| let mut fields = Vec::new(); |
| let mut etc = false; |
| let mut ate_comma = true; |
| let mut delayed_err: Option<DiagnosticBuilder<'a>> = None; |
| let mut etc_span = None; |
| |
| while self.token != token::CloseDelim(token::Brace) { |
| let attrs = self.parse_outer_attributes()?; |
| let lo = self.span; |
| |
| // check that a comma comes after every field |
| if !ate_comma { |
| let err = self.struct_span_err(self.prev_span, "expected `,`"); |
| if let Some(mut delayed) = delayed_err { |
| delayed.emit(); |
| } |
| return Err(err); |
| } |
| ate_comma = false; |
| |
| if self.check(&token::DotDot) || self.token == token::DotDotDot { |
| etc = true; |
| let mut etc_sp = self.span; |
| |
| if self.token == token::DotDotDot { // Issue #46718 |
| // Accept `...` as if it were `..` to avoid further errors |
| let mut err = self.struct_span_err(self.span, |
| "expected field pattern, found `...`"); |
| err.span_suggestion( |
| self.span, |
| "to omit remaining fields, use one fewer `.`", |
| "..".to_owned(), |
| Applicability::MachineApplicable |
| ); |
| err.emit(); |
| } |
| self.bump(); // `..` || `...` |
| |
| if self.token == token::CloseDelim(token::Brace) { |
| etc_span = Some(etc_sp); |
| break; |
| } |
| let token_str = self.this_token_descr(); |
| let mut err = self.fatal(&format!("expected `}}`, found {}", token_str)); |
| |
| err.span_label(self.span, "expected `}`"); |
| let mut comma_sp = None; |
| if self.token == token::Comma { // Issue #49257 |
| etc_sp = etc_sp.to(self.sess.source_map().span_until_non_whitespace(self.span)); |
| err.span_label(etc_sp, |
| "`..` must be at the end and cannot have a trailing comma"); |
| comma_sp = Some(self.span); |
| self.bump(); |
| ate_comma = true; |
| } |
| |
| etc_span = Some(etc_sp.until(self.span)); |
| if self.token == token::CloseDelim(token::Brace) { |
| // If the struct looks otherwise well formed, recover and continue. |
| if let Some(sp) = comma_sp { |
| err.span_suggestion_short( |
| sp, |
| "remove this comma", |
| String::new(), |
| Applicability::MachineApplicable, |
| ); |
| } |
| err.emit(); |
| break; |
| } else if self.token.is_ident() && ate_comma { |
| // Accept fields coming after `..,`. |
| // This way we avoid "pattern missing fields" errors afterwards. |
| // We delay this error until the end in order to have a span for a |
| // suggested fix. |
| if let Some(mut delayed_err) = delayed_err { |
| delayed_err.emit(); |
| return Err(err); |
| } else { |
| delayed_err = Some(err); |
| } |
| } else { |
| if let Some(mut err) = delayed_err { |
| err.emit(); |
| } |
| return Err(err); |
| } |
| } |
| |
| fields.push(match self.parse_pat_field(lo, attrs) { |
| Ok(field) => field, |
| Err(err) => { |
| if let Some(mut delayed_err) = delayed_err { |
| delayed_err.emit(); |
| } |
| return Err(err); |
| } |
| }); |
| ate_comma = self.eat(&token::Comma); |
| } |
| |
| if let Some(mut err) = delayed_err { |
| if let Some(etc_span) = etc_span { |
| err.multipart_suggestion( |
| "move the `..` to the end of the field list", |
| vec![ |
| (etc_span, String::new()), |
| (self.span, format!("{}.. }}", if ate_comma { "" } else { ", " })), |
| ], |
| Applicability::MachineApplicable, |
| ); |
| } |
| err.emit(); |
| } |
| return Ok((fields, etc)); |
| } |
| |
| fn parse_pat_range_end(&mut self) -> PResult<'a, P<Expr>> { |
| if self.token.is_path_start() { |
| let lo = self.span; |
| let (qself, path) = if self.eat_lt() { |
| // Parse a qualified path |
| let (qself, path) = self.parse_qpath(PathStyle::Expr)?; |
| (Some(qself), path) |
| } else { |
| // Parse an unqualified path |
| (None, self.parse_path(PathStyle::Expr)?) |
| }; |
| let hi = self.prev_span; |
| Ok(self.mk_expr(lo.to(hi), ExprKind::Path(qself, path), ThinVec::new())) |
| } else { |
| self.parse_literal_maybe_minus() |
| } |
| } |
| |
| // helper function to decide whether to parse as ident binding or to try to do |
| // something more complex like range patterns |
| fn parse_as_ident(&mut self) -> bool { |
| self.look_ahead(1, |t| match *t { |
| token::OpenDelim(token::Paren) | token::OpenDelim(token::Brace) | |
| token::DotDotDot | token::DotDotEq | token::ModSep | token::Not => Some(false), |
| // ensure slice patterns [a, b.., c] and [a, b, c..] don't go into the |
| // range pattern branch |
| token::DotDot => None, |
| _ => Some(true), |
| }).unwrap_or_else(|| self.look_ahead(2, |t| match *t { |
| token::Comma | token::CloseDelim(token::Bracket) => true, |
| _ => false, |
| })) |
| } |
| |
| /// A wrapper around `parse_pat` with some special error handling for the |
| /// "top-level" patterns in a match arm, `for` loop, `let`, &c. (in contrast |
| /// to subpatterns within such). |
| fn parse_top_level_pat(&mut self) -> PResult<'a, P<Pat>> { |
| let pat = self.parse_pat(None)?; |
| if self.token == token::Comma { |
| // An unexpected comma after a top-level pattern is a clue that the |
| // user (perhaps more accustomed to some other language) forgot the |
| // parentheses in what should have been a tuple pattern; return a |
| // suggestion-enhanced error here rather than choking on the comma |
| // later. |
| let comma_span = self.span; |
| self.bump(); |
| if let Err(mut err) = self.parse_pat_list() { |
| // We didn't expect this to work anyway; we just wanted |
| // to advance to the end of the comma-sequence so we know |
| // the span to suggest parenthesizing |
| err.cancel(); |
| } |
| let seq_span = pat.span.to(self.prev_span); |
| let mut err = self.struct_span_err(comma_span, |
| "unexpected `,` in pattern"); |
| if let Ok(seq_snippet) = self.sess.source_map().span_to_snippet(seq_span) { |
| err.span_suggestion( |
| seq_span, |
| "try adding parentheses to match on a tuple..", |
| format!("({})", seq_snippet), |
| Applicability::MachineApplicable |
| ).span_suggestion( |
| seq_span, |
| "..or a vertical bar to match on multiple alternatives", |
| format!("{}", seq_snippet.replace(",", " |")), |
| Applicability::MachineApplicable |
| ); |
| } |
| return Err(err); |
| } |
| Ok(pat) |
| } |
| |
| /// Parses a pattern. |
| pub fn parse_pat(&mut self, expected: Option<&'static str>) -> PResult<'a, P<Pat>> { |
| self.parse_pat_with_range_pat(true, expected) |
| } |
| |
| /// Parses a pattern, with a setting whether modern range patterns (e.g., `a..=b`, `a..b` are |
| /// allowed). |
| fn parse_pat_with_range_pat( |
| &mut self, |
| allow_range_pat: bool, |
| expected: Option<&'static str>, |
| ) -> PResult<'a, P<Pat>> { |
| maybe_whole!(self, NtPat, |x| x); |
| |
| let lo = self.span; |
| let pat; |
| match self.token { |
| token::BinOp(token::And) | token::AndAnd => { |
| // Parse &pat / &mut pat |
| self.expect_and()?; |
| let mutbl = self.parse_mutability(); |
| if let token::Lifetime(ident) = self.token { |
| let mut err = self.fatal(&format!("unexpected lifetime `{}` in pattern", |
| ident)); |
| err.span_label(self.span, "unexpected lifetime"); |
| return Err(err); |
| } |
| let subpat = self.parse_pat_with_range_pat(false, expected)?; |
| pat = PatKind::Ref(subpat, mutbl); |
| } |
| token::OpenDelim(token::Paren) => { |
| // Parse (pat,pat,pat,...) as tuple pattern |
| let (fields, ddpos, trailing_comma) = self.parse_parenthesized_pat_list()?; |
| pat = if fields.len() == 1 && ddpos.is_none() && !trailing_comma { |
| PatKind::Paren(fields.into_iter().nth(0).unwrap()) |
| } else { |
| PatKind::Tuple(fields, ddpos) |
| }; |
| } |
| token::OpenDelim(token::Bracket) => { |
| // Parse [pat,pat,...] as slice pattern |
| self.bump(); |
| let (before, slice, after) = self.parse_pat_vec_elements()?; |
| self.expect(&token::CloseDelim(token::Bracket))?; |
| pat = PatKind::Slice(before, slice, after); |
| } |
| // At this point, token != &, &&, (, [ |
| _ => if self.eat_keyword(keywords::Underscore) { |
| // Parse _ |
| pat = PatKind::Wild; |
| } else if self.eat_keyword(keywords::Mut) { |
| // Parse mut ident @ pat / mut ref ident @ pat |
| let mutref_span = self.prev_span.to(self.span); |
| let binding_mode = if self.eat_keyword(keywords::Ref) { |
| self.diagnostic() |
| .struct_span_err(mutref_span, "the order of `mut` and `ref` is incorrect") |
| .span_suggestion( |
| mutref_span, |
| "try switching the order", |
| "ref mut".into(), |
| Applicability::MachineApplicable |
| ).emit(); |
| BindingMode::ByRef(Mutability::Mutable) |
| } else { |
| BindingMode::ByValue(Mutability::Mutable) |
| }; |
| pat = self.parse_pat_ident(binding_mode)?; |
| } else if self.eat_keyword(keywords::Ref) { |
| // Parse ref ident @ pat / ref mut ident @ pat |
| let mutbl = self.parse_mutability(); |
| pat = self.parse_pat_ident(BindingMode::ByRef(mutbl))?; |
| } else if self.eat_keyword(keywords::Box) { |
| // Parse box pat |
| let subpat = self.parse_pat_with_range_pat(false, None)?; |
| pat = PatKind::Box(subpat); |
| } else if self.token.is_ident() && !self.token.is_reserved_ident() && |
| self.parse_as_ident() { |
| // Parse ident @ pat |
| // This can give false positives and parse nullary enums, |
| // they are dealt with later in resolve |
| let binding_mode = BindingMode::ByValue(Mutability::Immutable); |
| pat = self.parse_pat_ident(binding_mode)?; |
| } else if self.token.is_path_start() { |
| // Parse pattern starting with a path |
| let (qself, path) = if self.eat_lt() { |
| // Parse a qualified path |
| let (qself, path) = self.parse_qpath(PathStyle::Expr)?; |
| (Some(qself), path) |
| } else { |
| // Parse an unqualified path |
| (None, self.parse_path(PathStyle::Expr)?) |
| }; |
| match self.token { |
| token::Not if qself.is_none() => { |
| // Parse macro invocation |
| self.bump(); |
| let (delim, tts) = self.expect_delimited_token_tree()?; |
| let mac = respan(lo.to(self.prev_span), Mac_ { path, tts, delim }); |
| pat = PatKind::Mac(mac); |
| } |
| token::DotDotDot | token::DotDotEq | token::DotDot => { |
| let end_kind = match self.token { |
| token::DotDot => RangeEnd::Excluded, |
| token::DotDotDot => RangeEnd::Included(RangeSyntax::DotDotDot), |
| token::DotDotEq => RangeEnd::Included(RangeSyntax::DotDotEq), |
| _ => panic!("can only parse `..`/`...`/`..=` for ranges \ |
| (checked above)"), |
| }; |
| let op_span = self.span; |
| // Parse range |
| let span = lo.to(self.prev_span); |
| let begin = self.mk_expr(span, ExprKind::Path(qself, path), ThinVec::new()); |
| self.bump(); |
| let end = self.parse_pat_range_end()?; |
| let op = Spanned { span: op_span, node: end_kind }; |
| pat = PatKind::Range(begin, end, op); |
| } |
| token::OpenDelim(token::Brace) => { |
| if qself.is_some() { |
| let msg = "unexpected `{` after qualified path"; |
| let mut err = self.fatal(msg); |
| err.span_label(self.span, msg); |
| return Err(err); |
| } |
| // Parse struct pattern |
| self.bump(); |
| let (fields, etc) = self.parse_pat_fields().unwrap_or_else(|mut e| { |
| e.emit(); |
| self.recover_stmt(); |
| (vec![], false) |
| }); |
| self.bump(); |
| pat = PatKind::Struct(path, fields, etc); |
| } |
| token::OpenDelim(token::Paren) => { |
| if qself.is_some() { |
| let msg = "unexpected `(` after qualified path"; |
| let mut err = self.fatal(msg); |
| err.span_label(self.span, msg); |
| return Err(err); |
| } |
| // Parse tuple struct or enum pattern |
| let (fields, ddpos, _) = self.parse_parenthesized_pat_list()?; |
| pat = PatKind::TupleStruct(path, fields, ddpos) |
| } |
| _ => pat = PatKind::Path(qself, path), |
| } |
| } else { |
| // Try to parse everything else as literal with optional minus |
| match self.parse_literal_maybe_minus() { |
| Ok(begin) => { |
| let op_span = self.span; |
| if self.check(&token::DotDot) || self.check(&token::DotDotEq) || |
| self.check(&token::DotDotDot) { |
| let end_kind = if self.eat(&token::DotDotDot) { |
| RangeEnd::Included(RangeSyntax::DotDotDot) |
| } else if self.eat(&token::DotDotEq) { |
| RangeEnd::Included(RangeSyntax::DotDotEq) |
| } else if self.eat(&token::DotDot) { |
| RangeEnd::Excluded |
| } else { |
| panic!("impossible case: we already matched \ |
| on a range-operator token") |
| }; |
| let end = self.parse_pat_range_end()?; |
| let op = Spanned { span: op_span, node: end_kind }; |
| pat = PatKind::Range(begin, end, op); |
| } else { |
| pat = PatKind::Lit(begin); |
| } |
| } |
| Err(mut err) => { |
| self.cancel(&mut err); |
| let expected = expected.unwrap_or("pattern"); |
| let msg = format!( |
| "expected {}, found {}", |
| expected, |
| self.this_token_descr(), |
| ); |
| let mut err = self.fatal(&msg); |
| err.span_label(self.span, format!("expected {}", expected)); |
| return Err(err); |
| } |
| } |
| } |
| } |
| |
| let pat = Pat { node: pat, span: lo.to(self.prev_span), id: ast::DUMMY_NODE_ID }; |
| let pat = self.maybe_recover_from_bad_qpath(pat, true)?; |
| |
| if !allow_range_pat { |
| match pat.node { |
| PatKind::Range( |
| _, _, Spanned { node: RangeEnd::Included(RangeSyntax::DotDotDot), .. } |
| ) => {}, |
| PatKind::Range(..) => { |
| let mut err = self.struct_span_err( |
| pat.span, |
| "the range pattern here has ambiguous interpretation", |
| ); |
| err.span_suggestion( |
| pat.span, |
| "add parentheses to clarify the precedence", |
| format!("({})", pprust::pat_to_string(&pat)), |
| // "ambiguous interpretation" implies that we have to be guessing |
| Applicability::MaybeIncorrect |
| ); |
| return Err(err); |
| } |
| _ => {} |
| } |
| } |
| |
| Ok(P(pat)) |
| } |
| |
| /// Parses `ident` or `ident @ pat`. |
| /// used by the copy foo and ref foo patterns to give a good |
| /// error message when parsing mistakes like `ref foo(a, b)`. |
| fn parse_pat_ident(&mut self, |
| binding_mode: ast::BindingMode) |
| -> PResult<'a, PatKind> { |
| let ident = self.parse_ident()?; |
| let sub = if self.eat(&token::At) { |
| Some(self.parse_pat(Some("binding pattern"))?) |
| } else { |
| None |
| }; |
| |
| // just to be friendly, if they write something like |
| // ref Some(i) |
| // we end up here with ( as the current token. This shortly |
| // leads to a parse error. Note that if there is no explicit |
| // binding mode then we do not end up here, because the lookahead |
| // will direct us over to parse_enum_variant() |
| if self.token == token::OpenDelim(token::Paren) { |
| return Err(self.span_fatal( |
| self.prev_span, |
| "expected identifier, found enum pattern")) |
| } |
| |
| Ok(PatKind::Ident(binding_mode, ident, sub)) |
| } |
| |
| /// Parses a local variable declaration. |
| fn parse_local(&mut self, attrs: ThinVec<Attribute>) -> PResult<'a, P<Local>> { |
| let lo = self.prev_span; |
| let pat = self.parse_top_level_pat()?; |
| |
| let (err, ty) = if self.eat(&token::Colon) { |
| // Save the state of the parser before parsing type normally, in case there is a `:` |
| // instead of an `=` typo. |
| let parser_snapshot_before_type = self.clone(); |
| let colon_sp = self.prev_span; |
| match self.parse_ty() { |
| Ok(ty) => (None, Some(ty)), |
| Err(mut err) => { |
| // Rewind to before attempting to parse the type and continue parsing |
| let parser_snapshot_after_type = self.clone(); |
| mem::replace(self, parser_snapshot_before_type); |
| |
| let snippet = self.sess.source_map().span_to_snippet(pat.span).unwrap(); |
| err.span_label(pat.span, format!("while parsing the type for `{}`", snippet)); |
| (Some((parser_snapshot_after_type, colon_sp, err)), None) |
| } |
| } |
| } else { |
| (None, None) |
| }; |
| let init = match (self.parse_initializer(err.is_some()), err) { |
| (Ok(init), None) => { // init parsed, ty parsed |
| init |
| } |
| (Ok(init), Some((_, colon_sp, mut err))) => { // init parsed, ty error |
| // Could parse the type as if it were the initializer, it is likely there was a |
| // typo in the code: `:` instead of `=`. Add suggestion and emit the error. |
| err.span_suggestion_short( |
| colon_sp, |
| "use `=` if you meant to assign", |
| "=".to_string(), |
| Applicability::MachineApplicable |
| ); |
| err.emit(); |
| // As this was parsed successfully, continue as if the code has been fixed for the |
| // rest of the file. It will still fail due to the emitted error, but we avoid |
| // extra noise. |
| init |
| } |
| (Err(mut init_err), Some((snapshot, _, ty_err))) => { // init error, ty error |
| init_err.cancel(); |
| // Couldn't parse the type nor the initializer, only raise the type error and |
| // return to the parser state before parsing the type as the initializer. |
| // let x: <parse_error>; |
| mem::replace(self, snapshot); |
| return Err(ty_err); |
| } |
| (Err(err), None) => { // init error, ty parsed |
| // Couldn't parse the initializer and we're not attempting to recover a failed |
| // parse of the type, return the error. |
| return Err(err); |
| } |
| }; |
| let hi = if self.token == token::Semi { |
| self.span |
| } else { |
| self.prev_span |
| }; |
| Ok(P(ast::Local { |
| ty, |
| pat, |
| init, |
| id: ast::DUMMY_NODE_ID, |
| span: lo.to(hi), |
| attrs, |
| })) |
| } |
| |
| /// Parses a structure field. |
| fn parse_name_and_ty(&mut self, |
| lo: Span, |
| vis: Visibility, |
| attrs: Vec<Attribute>) |
| -> PResult<'a, StructField> { |
| let name = self.parse_ident()?; |
| self.expect(&token::Colon)?; |
| let ty = self.parse_ty()?; |
| Ok(StructField { |
| span: lo.to(self.prev_span), |
| ident: Some(name), |
| vis, |
| id: ast::DUMMY_NODE_ID, |
| ty, |
| attrs, |
| }) |
| } |
| |
| /// Emits an expected-item-after-attributes error. |
| fn expected_item_err(&mut self, attrs: &[Attribute]) -> PResult<'a, ()> { |
| let message = match attrs.last() { |
| Some(&Attribute { is_sugared_doc: true, .. }) => "expected item after doc comment", |
| _ => "expected item after attributes", |
| }; |
| |
| let mut err = self.diagnostic().struct_span_err(self.prev_span, message); |
| if attrs.last().unwrap().is_sugared_doc { |
| err.span_label(self.prev_span, "this doc comment doesn't document anything"); |
| } |
| Err(err) |
| } |
| |
| /// Parse a statement. This stops just before trailing semicolons on everything but items. |
| /// e.g., a `StmtKind::Semi` parses to a `StmtKind::Expr`, leaving the trailing `;` unconsumed. |
| pub fn parse_stmt(&mut self) -> PResult<'a, Option<Stmt>> { |
| Ok(self.parse_stmt_(true)) |
| } |
| |
| // Eat tokens until we can be relatively sure we reached the end of the |
| // statement. This is something of a best-effort heuristic. |
| // |
| // We terminate when we find an unmatched `}` (without consuming it). |
| fn recover_stmt(&mut self) { |
| self.recover_stmt_(SemiColonMode::Ignore, BlockMode::Ignore) |
| } |
| |
| // If `break_on_semi` is `Break`, then we will stop consuming tokens after |
| // finding (and consuming) a `;` outside of `{}` or `[]` (note that this is |
| // approximate - it can mean we break too early due to macros, but that |
| // should only lead to sub-optimal recovery, not inaccurate parsing). |
| // |
| // If `break_on_block` is `Break`, then we will stop consuming tokens |
| // after finding (and consuming) a brace-delimited block. |
| fn recover_stmt_(&mut self, break_on_semi: SemiColonMode, break_on_block: BlockMode) { |
| let mut brace_depth = 0; |
| let mut bracket_depth = 0; |
| let mut in_block = false; |
| debug!("recover_stmt_ enter loop (semi={:?}, block={:?})", |
| break_on_semi, break_on_block); |
| loop { |
| debug!("recover_stmt_ loop {:?}", self.token); |
| match self.token { |
| token::OpenDelim(token::DelimToken::Brace) => { |
| brace_depth += 1; |
| self.bump(); |
| if break_on_block == BlockMode::Break && |
| brace_depth == 1 && |
| bracket_depth == 0 { |
| in_block = true; |
| } |
| } |
| token::OpenDelim(token::DelimToken::Bracket) => { |
| bracket_depth += 1; |
| self.bump(); |
| } |
| token::CloseDelim(token::DelimToken::Brace) => { |
| if brace_depth == 0 { |
| debug!("recover_stmt_ return - close delim {:?}", self.token); |
| break; |
| } |
| brace_depth -= 1; |
| self.bump(); |
| if in_block && bracket_depth == 0 && brace_depth == 0 { |
| debug!("recover_stmt_ return - block end {:?}", self.token); |
| break; |
| } |
| } |
| token::CloseDelim(token::DelimToken::Bracket) => { |
| bracket_depth -= 1; |
| if bracket_depth < 0 { |
| bracket_depth = 0; |
| } |
| self.bump(); |
| } |
| token::Eof => { |
| debug!("recover_stmt_ return - Eof"); |
| break; |
| } |
| token::Semi => { |
| self.bump(); |
| if break_on_semi == SemiColonMode::Break && |
| brace_depth == 0 && |
| bracket_depth == 0 { |
| debug!("recover_stmt_ return - Semi"); |
| break; |
| } |
| } |
| token::Comma => { |
| if break_on_semi == SemiColonMode::Comma && |
| brace_depth == 0 && |
| bracket_depth == 0 { |
| debug!("recover_stmt_ return - Semi"); |
| break; |
| } else { |
| self.bump(); |
| } |
| } |
| _ => { |
| self.bump() |
| } |
| } |
| } |
| } |
| |
| fn parse_stmt_(&mut self, macro_legacy_warnings: bool) -> Option<Stmt> { |
| self.parse_stmt_without_recovery(macro_legacy_warnings).unwrap_or_else(|mut e| { |
| e.emit(); |
| self.recover_stmt_(SemiColonMode::Break, BlockMode::Ignore); |
| None |
| }) |
| } |
| |
| fn is_async_block(&mut self) -> bool { |
| self.token.is_keyword(keywords::Async) && |
| ( |
| ( // `async move {` |
| self.look_ahead(1, |t| t.is_keyword(keywords::Move)) && |
| self.look_ahead(2, |t| *t == token::OpenDelim(token::Brace)) |
| ) || ( // `async {` |
| self.look_ahead(1, |t| *t == token::OpenDelim(token::Brace)) |
| ) |
| ) |
| } |
| |
| fn is_do_catch_block(&mut self) -> bool { |
| self.token.is_keyword(keywords::Do) && |
| self.look_ahead(1, |t| t.is_keyword(keywords::Catch)) && |
| self.look_ahead(2, |t| *t == token::OpenDelim(token::Brace)) && |
| !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL) |
| } |
| |
| fn is_try_block(&mut self) -> bool { |
| self.token.is_keyword(keywords::Try) && |
| self.look_ahead(1, |t| *t == token::OpenDelim(token::Brace)) && |
| self.span.rust_2018() && |
| // prevent `while try {} {}`, `if try {} {} else {}`, etc. |
| !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL) |
| } |
| |
| fn is_union_item(&self) -> bool { |
| self.token.is_keyword(keywords::Union) && |
| self.look_ahead(1, |t| t.is_ident() && !t.is_reserved_ident()) |
| } |
| |
| fn is_crate_vis(&self) -> bool { |
| self.token.is_keyword(keywords::Crate) && self.look_ahead(1, |t| t != &token::ModSep) |
| } |
| |
| fn is_existential_type_decl(&self) -> bool { |
| self.token.is_keyword(keywords::Existential) && |
| self.look_ahead(1, |t| t.is_keyword(keywords::Type)) |
| } |
| |
| fn is_auto_trait_item(&mut self) -> bool { |
| // auto trait |
| (self.token.is_keyword(keywords::Auto) |
| && self.look_ahead(1, |t| t.is_keyword(keywords::Trait))) |
| || // unsafe auto trait |
| (self.token.is_keyword(keywords::Unsafe) && |
| self.look_ahead(1, |t| t.is_keyword(keywords::Auto)) && |
| self.look_ahead(2, |t| t.is_keyword(keywords::Trait))) |
| } |
| |
| fn eat_macro_def(&mut self, attrs: &[Attribute], vis: &Visibility, lo: Span) |
| -> PResult<'a, Option<P<Item>>> { |
| let token_lo = self.span; |
| let (ident, def) = match self.token { |
| token::Ident(ident, false) if ident.name == keywords::Macro.name() => { |
| self.bump(); |
| let ident = self.parse_ident()?; |
| let tokens = if self.check(&token::OpenDelim(token::Brace)) { |
| match self.parse_token_tree() { |
| TokenTree::Delimited(_, _, tts) => tts, |
| _ => unreachable!(), |
| } |
| } else if self.check(&token::OpenDelim(token::Paren)) { |
| let args = self.parse_token_tree(); |
| let body = if self.check(&token::OpenDelim(token::Brace)) { |
| self.parse_token_tree() |
| } else { |
| self.unexpected()?; |
| unreachable!() |
| }; |
| TokenStream::new(vec![ |
| args.into(), |
| TokenTree::Token(token_lo.to(self.prev_span), token::FatArrow).into(), |
| body.into(), |
| ]) |
| } else { |
| self.unexpected()?; |
| unreachable!() |
| }; |
| |
| (ident, ast::MacroDef { tokens: tokens.into(), legacy: false }) |
| } |
| token::Ident(ident, _) if ident.name == "macro_rules" && |
| self.look_ahead(1, |t| *t == token::Not) => { |
| let prev_span = self.prev_span; |
| self.complain_if_pub_macro(&vis.node, prev_span); |
| self.bump(); |
| self.bump(); |
| |
| let ident = self.parse_ident()?; |
| let (delim, tokens) = self.expect_delimited_token_tree()?; |
| if delim != MacDelimiter::Brace { |
| if !self.eat(&token::Semi) { |
| let msg = "macros that expand to items must either \ |
| be surrounded with braces or followed by a semicolon"; |
| self.span_err(self.prev_span, msg); |
| } |
| } |
| |
| (ident, ast::MacroDef { tokens: tokens, legacy: true }) |
| } |
| _ => return Ok(None), |
| }; |
| |
| let span = lo.to(self.prev_span); |
| Ok(Some(self.mk_item(span, ident, ItemKind::MacroDef(def), vis.clone(), attrs.to_vec()))) |
| } |
| |
| fn parse_stmt_without_recovery(&mut self, |
| macro_legacy_warnings: bool) |
| -> PResult<'a, Option<Stmt>> { |
| maybe_whole!(self, NtStmt, |x| Some(x)); |
| |
| let attrs = self.parse_outer_attributes()?; |
| let lo = self.span; |
| |
| Ok(Some(if self.eat_keyword(keywords::Let) { |
| Stmt { |
| id: ast::DUMMY_NODE_ID, |
| node: StmtKind::Local(self.parse_local(attrs.into())?), |
| span: lo.to(self.prev_span), |
| } |
| } else if let Some(macro_def) = self.eat_macro_def( |
| &attrs, |
| &source_map::respan(lo, VisibilityKind::Inherited), |
| lo, |
| )? { |
| Stmt { |
| id: ast::DUMMY_NODE_ID, |
| node: StmtKind::Item(macro_def), |
| span: lo.to(self.prev_span), |
| } |
| // Starts like a simple path, being careful to avoid contextual keywords |
| // such as a union items, item with `crate` visibility or auto trait items. |
| // Our goal here is to parse an arbitrary path `a::b::c` but not something that starts |
| // like a path (1 token), but it fact not a path. |
| // `union::b::c` - path, `union U { ... }` - not a path. |
| // `crate::b::c` - path, `crate struct S;` - not a path. |
| } else if self.token.is_path_start() && |
| !self.token.is_qpath_start() && |
| !self.is_union_item() && |
| !self.is_crate_vis() && |
| !self.is_existential_type_decl() && |
| !self.is_auto_trait_item() { |
| let pth = self.parse_path(PathStyle::Expr)?; |
| |
| if !self.eat(&token::Not) { |
| let expr = if self.check(&token::OpenDelim(token::Brace)) { |
| self.parse_struct_expr(lo, pth, ThinVec::new())? |
| } else { |
| let hi = self.prev_span; |
| self.mk_expr(lo.to(hi), ExprKind::Path(None, pth), ThinVec::new()) |
| }; |
| |
| let expr = self.with_res(Restrictions::STMT_EXPR, |this| { |
| let expr = this.parse_dot_or_call_expr_with(expr, lo, attrs.into())?; |
| this.parse_assoc_expr_with(0, LhsExpr::AlreadyParsed(expr)) |
| })?; |
| |
| return Ok(Some(Stmt { |
| id: ast::DUMMY_NODE_ID, |
| node: StmtKind::Expr(expr), |
| span: lo.to(self.prev_span), |
| })); |
| } |
| |
| // it's a macro invocation |
| let id = match self.token { |
| token::OpenDelim(_) => keywords::Invalid.ident(), // no special identifier |
| _ => self.parse_ident()?, |
| }; |
| |
| // check that we're pointing at delimiters (need to check |
| // again after the `if`, because of `parse_ident` |
| // consuming more tokens). |
| match self.token { |
| token::OpenDelim(_) => {} |
| _ => { |
| // we only expect an ident if we didn't parse one |
| // above. |
| let ident_str = if id.name == keywords::Invalid.name() { |
| "identifier, " |
| } else { |
| "" |
| }; |
| let tok_str = self.this_token_descr(); |
| let mut err = self.fatal(&format!("expected {}`(` or `{{`, found {}", |
| ident_str, |
| tok_str)); |
| err.span_label(self.span, format!("expected {}`(` or `{{`", ident_str)); |
| return Err(err) |
| }, |
| } |
| |
| let (delim, tts) = self.expect_delimited_token_tree()?; |
| let hi = self.prev_span; |
| |
| let style = if delim == MacDelimiter::Brace { |
| MacStmtStyle::Braces |
| } else { |
| MacStmtStyle::NoBraces |
| }; |
| |
| if id.name == keywords::Invalid.name() { |
| let mac = respan(lo.to(hi), Mac_ { path: pth, tts, delim }); |
| let node = if delim == MacDelimiter::Brace || |
| self.token == token::Semi || self.token == token::Eof { |
| StmtKind::Mac(P((mac, style, attrs.into()))) |
| } |
| // We used to incorrectly stop parsing macro-expanded statements here. |
| // If the next token will be an error anyway but could have parsed with the |
| // earlier behavior, stop parsing here and emit a warning to avoid breakage. |
| else if macro_legacy_warnings && self.token.can_begin_expr() && match self.token { |
| // These can continue an expression, so we can't stop parsing and warn. |
| token::OpenDelim(token::Paren) | token::OpenDelim(token::Bracket) | |
| token::BinOp(token::Minus) | token::BinOp(token::Star) | |
| token::BinOp(token::And) | token::BinOp(token::Or) | |
| token::AndAnd | token::OrOr | |
| token::DotDot | token::DotDotDot | token::DotDotEq => false, |
| _ => true, |
| } { |
| self.warn_missing_semicolon(); |
| StmtKind::Mac(P((mac, style, attrs.into()))) |
| } else { |
| let e = self.mk_mac_expr(lo.to(hi), mac.node, ThinVec::new()); |
| let e = self.parse_dot_or_call_expr_with(e, lo, attrs.into())?; |
| let e = self.parse_assoc_expr_with(0, LhsExpr::AlreadyParsed(e))?; |
| StmtKind::Expr(e) |
| }; |
| Stmt { |
| id: ast::DUMMY_NODE_ID, |
| span: lo.to(hi), |
| node, |
| } |
| } else { |
| // if it has a special ident, it's definitely an item |
| // |
| // Require a semicolon or braces. |
| if style != MacStmtStyle::Braces { |
| if !self.eat(&token::Semi) { |
| self.span_err(self.prev_span, |
| "macros that expand to items must \ |
| either be surrounded with braces or \ |
| followed by a semicolon"); |
| } |
| } |
| let span = lo.to(hi); |
| Stmt { |
| id: ast::DUMMY_NODE_ID, |
| span, |
| node: StmtKind::Item({ |
| self.mk_item( |
| span, id /*id is good here*/, |
| ItemKind::Mac(respan(span, Mac_ { path: pth, tts, delim })), |
| respan(lo, VisibilityKind::Inherited), |
| attrs) |
| }), |
| } |
| } |
| } else { |
| // FIXME: Bad copy of attrs |
| let old_directory_ownership = |
| mem::replace(&mut self.directory.ownership, DirectoryOwnership::UnownedViaBlock); |
| let item = self.parse_item_(attrs.clone(), false, true)?; |
| self.directory.ownership = old_directory_ownership; |
| |
| match item { |
| Some(i) => Stmt { |
| id: ast::DUMMY_NODE_ID, |
| span: lo.to(i.span), |
| node: StmtKind::Item(i), |
| }, |
| None => { |
| let unused_attrs = |attrs: &[Attribute], s: &mut Self| { |
| if !attrs.is_empty() { |
| if s.prev_token_kind == PrevTokenKind::DocComment { |
| s.span_fatal_err(s.prev_span, Error::UselessDocComment).emit(); |
| } else if attrs.iter().any(|a| a.style == AttrStyle::Outer) { |
| s.span_err(s.span, "expected statement after outer attribute"); |
| } |
| } |
| }; |
| |
| // Do not attempt to parse an expression if we're done here. |
| if self.token == token::Semi { |
| unused_attrs(&attrs, self); |
| self.bump(); |
| return Ok(None); |
| } |
| |
| if self.token == token::CloseDelim(token::Brace) { |
| unused_attrs(&attrs, self); |
| return Ok(None); |
| } |
| |
| // Remainder are line-expr stmts. |
| let e = self.parse_expr_res( |
| Restrictions::STMT_EXPR, Some(attrs.into()))?; |
| Stmt { |
| id: ast::DUMMY_NODE_ID, |
| span: lo.to(e.span), |
| node: StmtKind::Expr(e), |
| } |
| } |
| } |
| })) |
| } |
| |
| /// Checks if this expression is a successfully parsed statement. |
| fn expr_is_complete(&mut self, e: &Expr) -> bool { |
| self.restrictions.contains(Restrictions::STMT_EXPR) && |
| !classify::expr_requires_semi_to_be_stmt(e) |
| } |
| |
| /// Parses a block. No inner attributes are allowed. |
| pub fn parse_block(&mut self) -> PResult<'a, P<Block>> { |
| maybe_whole!(self, NtBlock, |x| x); |
| |
| let lo = self.span; |
| |
| if !self.eat(&token::OpenDelim(token::Brace)) { |
| let sp = self.span; |
| let tok = self.this_token_descr(); |
| let mut e = self.span_fatal(sp, &format!("expected `{{`, found {}", tok)); |
| let do_not_suggest_help = |
| self.token.is_keyword(keywords::In) || self.token == token::Colon; |
| |
| if self.token.is_ident_named("and") { |
| e.span_suggestion_short( |
| self.span, |
| "use `&&` instead of `and` for the boolean operator", |
| "&&".to_string(), |
| Applicability::MaybeIncorrect, |
| ); |
| } |
| if self.token.is_ident_named("or") { |
| e.span_suggestion_short( |
| self.span, |
| "use `||` instead of `or` for the boolean operator", |
| "||".to_string(), |
| Applicability::MaybeIncorrect, |
| ); |
| } |
| |
| // Check to see if the user has written something like |
| // |
| // if (cond) |
| // bar; |
| // |
| // Which is valid in other languages, but not Rust. |
| match self.parse_stmt_without_recovery(false) { |
| Ok(Some(stmt)) => { |
| if self.look_ahead(1, |t| t == &token::OpenDelim(token::Brace)) |
| || do_not_suggest_help { |
| // if the next token is an open brace (e.g., `if a b {`), the place- |
| // inside-a-block suggestion would be more likely wrong than right |
| e.span_label(sp, "expected `{`"); |
| return Err(e); |
| } |
| let mut stmt_span = stmt.span; |
| // expand the span to include the semicolon, if it exists |
| if self.eat(&token::Semi) { |
| stmt_span = stmt_span.with_hi(self.prev_span.hi()); |
| } |
| let sugg = pprust::to_string(|s| { |
| use crate::print::pprust::{PrintState, INDENT_UNIT}; |
| s.ibox(INDENT_UNIT)?; |
| s.bopen()?; |
| s.print_stmt(&stmt)?; |
| s.bclose_maybe_open(stmt.span, INDENT_UNIT, false) |
| }); |
| e.span_suggestion( |
| stmt_span, |
| "try placing this code inside a block", |
| sugg, |
| // speculative, has been misleading in the past (closed Issue #46836) |
| Applicability::MaybeIncorrect |
| ); |
| } |
| Err(mut e) => { |
| self.recover_stmt_(SemiColonMode::Break, BlockMode::Ignore); |
| self.cancel(&mut e); |
| } |
| _ => () |
| } |
| e.span_label(sp, "expected `{`"); |
| return Err(e); |
| } |
| |
| self.parse_block_tail(lo, BlockCheckMode::Default) |
| } |
| |
| /// Parses a block. Inner attributes are allowed. |
| fn parse_inner_attrs_and_block(&mut self) -> PResult<'a, (Vec<Attribute>, P<Block>)> { |
| maybe_whole!(self, NtBlock, |x| (Vec::new(), x)); |
| |
| let lo = self.span; |
| self.expect(&token::OpenDelim(token::Brace))?; |
| Ok((self.parse_inner_attributes()?, |
| self.parse_block_tail(lo, BlockCheckMode::Default)?)) |
| } |
| |
| /// Parses the rest of a block expression or function body. |
| /// Precondition: already parsed the '{'. |
| fn parse_block_tail(&mut self, lo: Span, s: BlockCheckMode) -> PResult<'a, P<Block>> { |
| let mut stmts = vec![]; |
| while !self.eat(&token::CloseDelim(token::Brace)) { |
| let stmt = match self.parse_full_stmt(false) { |
| Err(mut err) => { |
| err.emit(); |
| self.recover_stmt_(SemiColonMode::Ignore, BlockMode::Ignore); |
| Some(Stmt { |
| id: ast::DUMMY_NODE_ID, |
| node: StmtKind::Expr(DummyResult::raw_expr(self.span, true)), |
| span: self.span, |
| }) |
| } |
| Ok(stmt) => stmt, |
| }; |
| if let Some(stmt) = stmt { |
| stmts.push(stmt); |
| } else if self.token == token::Eof { |
| break; |
| } else { |
| // Found only `;` or `}`. |
| continue; |
| }; |
| } |
| Ok(P(ast::Block { |
| stmts, |
| id: ast::DUMMY_NODE_ID, |
| rules: s, |
| span: lo.to(self.prev_span), |
| })) |
| } |
| |
| /// Parses a statement, including the trailing semicolon. |
| crate fn parse_full_stmt(&mut self, macro_legacy_warnings: bool) -> PResult<'a, Option<Stmt>> { |
| // skip looking for a trailing semicolon when we have an interpolated statement |
| maybe_whole!(self, NtStmt, |x| Some(x)); |
| |
| let mut stmt = match self.parse_stmt_without_recovery(macro_legacy_warnings)? { |
| Some(stmt) => stmt, |
| None => return Ok(None), |
| }; |
| |
| match stmt.node { |
| StmtKind::Expr(ref expr) if self.token != token::Eof => { |
| // expression without semicolon |
| if classify::expr_requires_semi_to_be_stmt(expr) { |
| // Just check for errors and recover; do not eat semicolon yet. |
| if let Err(mut e) = |
| self.expect_one_of(&[], &[token::Semi, token::CloseDelim(token::Brace)]) |
| { |
| e.emit(); |
| self.recover_stmt(); |
| } |
| } |
| } |
| StmtKind::Local(..) => { |
| // We used to incorrectly allow a macro-expanded let statement to lack a semicolon. |
| if macro_legacy_warnings && self.token != token::Semi { |
| self.warn_missing_semicolon(); |
| } else { |
| self.expect_one_of(&[], &[token::Semi])?; |
| } |
| } |
| _ => {} |
| } |
| |
| if self.eat(&token::Semi) { |
| stmt = stmt.add_trailing_semicolon(); |
| } |
| |
| stmt.span = stmt.span.with_hi(self.prev_span.hi()); |
| Ok(Some(stmt)) |
| } |
| |
| fn warn_missing_semicolon(&self) { |
| self.diagnostic().struct_span_warn(self.span, { |
| &format!("expected `;`, found {}", self.this_token_descr()) |
| }).note({ |
| "This was erroneously allowed and will become a hard error in a future release" |
| }).emit(); |
| } |
| |
| fn err_dotdotdot_syntax(&self, span: Span) { |
| self.diagnostic().struct_span_err(span, { |
| "unexpected token: `...`" |
| }).span_suggestion( |
| span, "use `..` for an exclusive range", "..".to_owned(), |
| Applicability::MaybeIncorrect |
| ).span_suggestion( |
| span, "or `..=` for an inclusive range", "..=".to_owned(), |
| Applicability::MaybeIncorrect |
| ).emit(); |
| } |
| |
| /// Parses bounds of a type parameter `BOUND + BOUND + ...`, possibly with trailing `+`. |
| /// |
| /// ``` |
| /// BOUND = TY_BOUND | LT_BOUND |
| /// LT_BOUND = LIFETIME (e.g., `'a`) |
| /// TY_BOUND = TY_BOUND_NOPAREN | (TY_BOUND_NOPAREN) |
| /// TY_BOUND_NOPAREN = [?] [for<LT_PARAM_DEFS>] SIMPLE_PATH (e.g., `?for<'a: 'b> m::Trait<'a>`) |
| /// ``` |
| fn parse_generic_bounds_common(&mut self, |
| allow_plus: bool, |
| colon_span: Option<Span>) -> PResult<'a, GenericBounds> { |
| let mut bounds = Vec::new(); |
| let mut negative_bounds = Vec::new(); |
| let mut last_plus_span = None; |
| loop { |
| // This needs to be synchronized with `Token::can_begin_bound`. |
| let is_bound_start = self.check_path() || self.check_lifetime() || |
| self.check(&token::Not) || // used for error reporting only |
| self.check(&token::Question) || |
| self.check_keyword(keywords::For) || |
| self.check(&token::OpenDelim(token::Paren)); |
| if is_bound_start { |
| let lo = self.span; |
| let has_parens = self.eat(&token::OpenDelim(token::Paren)); |
| let inner_lo = self.span; |
| let is_negative = self.eat(&token::Not); |
| let question = if self.eat(&token::Question) { Some(self.prev_span) } else { None }; |
| if self.token.is_lifetime() { |
| if let Some(question_span) = question { |
| self.span_err(question_span, |
| "`?` may only modify trait bounds, not lifetime bounds"); |
| } |
| bounds.push(GenericBound::Outlives(self.expect_lifetime())); |
| if has_parens { |
| let inner_span = inner_lo.to(self.prev_span); |
| self.expect(&token::CloseDelim(token::Paren))?; |
| let mut err = self.struct_span_err( |
| lo.to(self.prev_span), |
| "parenthesized lifetime bounds are not supported" |
| ); |
| if let Ok(snippet) = self.sess.source_map().span_to_snippet(inner_span) { |
| err.span_suggestion_short( |
| lo.to(self.prev_span), |
| "remove the parentheses", |
| snippet.to_owned(), |
| Applicability::MachineApplicable |
| ); |
| } |
| err.emit(); |
| } |
| } else { |
| let lifetime_defs = self.parse_late_bound_lifetime_defs()?; |
| let path = self.parse_path(PathStyle::Type)?; |
| if has_parens { |
| self.expect(&token::CloseDelim(token::Paren))?; |
| } |
| let poly_span = lo.to(self.prev_span); |
| if is_negative { |
| negative_bounds.push( |
| last_plus_span.or(colon_span).unwrap() |
| .to(poly_span)); |
| } else { |
| let poly_trait = PolyTraitRef::new(lifetime_defs, path, poly_span); |
| let modifier = if question.is_some() { |
| TraitBoundModifier::Maybe |
| } else { |
| TraitBoundModifier::None |
| }; |
| bounds.push(GenericBound::Trait(poly_trait, modifier)); |
| } |
| } |
| } else { |
| break |
| } |
| |
| if !allow_plus || !self.eat_plus() { |
| break |
| } else { |
| last_plus_span = Some(self.prev_span); |
| } |
| } |
| |
| if !negative_bounds.is_empty() { |
| let plural = negative_bounds.len() > 1; |
| let mut err = self.struct_span_err(negative_bounds, |
| "negative trait bounds are not supported"); |
| let bound_list = colon_span.unwrap().to(self.prev_span); |
| let mut new_bound_list = String::new(); |
| if !bounds.is_empty() { |
| let mut snippets = bounds.iter().map(|bound| bound.span()) |
| .map(|span| self.sess.source_map().span_to_snippet(span)); |
| while let Some(Ok(snippet)) = snippets.next() { |
| new_bound_list.push_str(" + "); |
| new_bound_list.push_str(&snippet); |
| } |
| new_bound_list = new_bound_list.replacen(" +", ":", 1); |
| } |
| err.span_suggestion_short(bound_list, |
| &format!("remove the trait bound{}", |
| if plural { "s" } else { "" }), |
| new_bound_list, |
| Applicability::MachineApplicable); |
| err.emit(); |
| } |
| |
| return Ok(bounds); |
| } |
| |
| fn parse_generic_bounds(&mut self, colon_span: Option<Span>) -> PResult<'a, GenericBounds> { |
| self.parse_generic_bounds_common(true, colon_span) |
| } |
| |
| /// Parses bounds of a lifetime parameter `BOUND + BOUND + BOUND`, possibly with trailing `+`. |
| /// |
| /// ``` |
| /// BOUND = LT_BOUND (e.g., `'a`) |
| /// ``` |
| fn parse_lt_param_bounds(&mut self) -> GenericBounds { |
| let mut lifetimes = Vec::new(); |
| while self.check_lifetime() { |
| lifetimes.push(ast::GenericBound::Outlives(self.expect_lifetime())); |
| |
| if !self.eat_plus() { |
| break |
| } |
| } |
| lifetimes |
| } |
| |
| /// Matches `typaram = IDENT (`?` unbound)? optbounds ( EQ ty )?`. |
| fn parse_ty_param(&mut self, |
| preceding_attrs: Vec<Attribute>) |
| -> PResult<'a, GenericParam> { |
| let ident = self.parse_ident()?; |
| |
| // Parse optional colon and param bounds. |
| let bounds = if self.eat(&token::Colon) { |
| self.parse_generic_bounds(None)? |
| } else { |
| Vec::new() |
| }; |
| |
| let default = if self.eat(&token::Eq) { |
| Some(self.parse_ty()?) |
| } else { |
| None |
| }; |
| |
| Ok(GenericParam { |
| ident, |
| id: ast::DUMMY_NODE_ID, |
| attrs: preceding_attrs.into(), |
| bounds, |
| kind: GenericParamKind::Type { |
| default, |
| } |
| }) |
| } |
| |
| /// Parses the following grammar: |
| /// |
| /// TraitItemAssocTy = Ident ["<"...">"] [":" [GenericBounds]] ["where" ...] ["=" Ty] |
| fn parse_trait_item_assoc_ty(&mut self) |
| -> PResult<'a, (Ident, TraitItemKind, ast::Generics)> { |
| let ident = self.parse_ident()?; |
| let mut generics = self.parse_generics()?; |
| |
| // Parse optional colon and param bounds. |
| let bounds = if self.eat(&token::Colon) { |
| self.parse_generic_bounds(None)? |
| } else { |
| Vec::new() |
| }; |
| generics.where_clause = self.parse_where_clause()?; |
| |
| let default = if self.eat(&token::Eq) { |
| Some(self.parse_ty()?) |
| } else { |
| None |
| }; |
| self.expect(&token::Semi)?; |
| |
| Ok((ident, TraitItemKind::Type(bounds, default), generics)) |
| } |
| |
| fn parse_const_param(&mut self, preceding_attrs: Vec<Attribute>) -> PResult<'a, GenericParam> { |
| self.expect_keyword(keywords::Const)?; |
| let ident = self.parse_ident()?; |
| self.expect(&token::Colon)?; |
| let ty = self.parse_ty()?; |
| |
| Ok(GenericParam { |
| ident, |
| id: ast::DUMMY_NODE_ID, |
| attrs: preceding_attrs.into(), |
| bounds: Vec::new(), |
| kind: GenericParamKind::Const { |
| ty, |
| } |
| }) |
| } |
| |
| /// Parses a (possibly empty) list of lifetime and type parameters, possibly including |
| /// a trailing comma and erroneous trailing attributes. |
| crate fn parse_generic_params(&mut self) -> PResult<'a, Vec<ast::GenericParam>> { |
| let mut params = Vec::new(); |
| loop { |
| let attrs = self.parse_outer_attributes()?; |
| if self.check_lifetime() { |
| let lifetime = self.expect_lifetime(); |
| // Parse lifetime parameter. |
| let bounds = if self.eat(&token::Colon) { |
| self.parse_lt_param_bounds() |
| } else { |
| Vec::new() |
| }; |
| params.push(ast::GenericParam { |
| ident: lifetime.ident, |
| id: lifetime.id, |
| attrs: attrs.into(), |
| bounds, |
| kind: ast::GenericParamKind::Lifetime, |
| }); |
| } else if self.check_keyword(keywords::Const) { |
| // Parse const parameter. |
| params.push(self.parse_const_param(attrs)?); |
| } else if self.check_ident() { |
| // Parse type parameter. |
| params.push(self.parse_ty_param(attrs)?); |
| } else { |
| // Check for trailing attributes and stop parsing. |
| if !attrs.is_empty() { |
| if !params.is_empty() { |
| self.struct_span_err( |
| attrs[0].span, |
| &format!("trailing attribute after generic parameter"), |
| ) |
| .span_label(attrs[0].span, "attributes must go before parameters") |
| .emit(); |
| } else { |
| self.struct_span_err( |
| attrs[0].span, |
| &format!("attribute without generic parameters"), |
| ) |
| .span_label( |
| attrs[0].span, |
| "attributes are only permitted when preceding parameters", |
| ) |
| .emit(); |
| } |
| } |
| break |
| } |
| |
| if !self.eat(&token::Comma) { |
| break |
| } |
| } |
| Ok(params) |
| } |
| |
| /// Parses a set of optional generic type parameter declarations. Where |
| /// clauses are not parsed here, and must be added later via |
| /// `parse_where_clause()`. |
| /// |
| /// matches generics = ( ) | ( < > ) | ( < typaramseq ( , )? > ) | ( < lifetimes ( , )? > ) |
| /// | ( < lifetimes , typaramseq ( , )? > ) |
| /// where typaramseq = ( typaram ) | ( typaram , typaramseq ) |
| fn parse_generics(&mut self) -> PResult<'a, ast::Generics> { |
| maybe_whole!(self, NtGenerics, |x| x); |
| |
| let span_lo = self.span; |
| if self.eat_lt() { |
| let params = self.parse_generic_params()?; |
| self.expect_gt()?; |
| Ok(ast::Generics { |
| params, |
| where_clause: WhereClause { |
| id: ast::DUMMY_NODE_ID, |
| predicates: Vec::new(), |
| span: syntax_pos::DUMMY_SP, |
| }, |
| span: span_lo.to(self.prev_span), |
| }) |
| } else { |
| Ok(ast::Generics::default()) |
| } |
| } |
| |
| /// Parses generic args (within a path segment) with recovery for extra leading angle brackets. |
| /// For the purposes of understanding the parsing logic of generic arguments, this function |
| /// can be thought of being the same as just calling `self.parse_generic_args()` if the source |
| /// had the correct amount of leading angle brackets. |
| /// |
| /// ```ignore (diagnostics) |
| /// bar::<<<<T as Foo>::Output>(); |
| /// ^^ help: remove extra angle brackets |
| /// ``` |
| fn parse_generic_args_with_leaning_angle_bracket_recovery( |
| &mut self, |
| style: PathStyle, |
| lo: Span, |
| ) -> PResult<'a, (Vec<GenericArg>, Vec<TypeBinding>)> { |
| // We need to detect whether there are extra leading left angle brackets and produce an |
| // appropriate error and suggestion. This cannot be implemented by looking ahead at |
| // upcoming tokens for a matching `>` character - if there are unmatched `<` tokens |
| // then there won't be matching `>` tokens to find. |
| // |
| // To explain how this detection works, consider the following example: |
| // |
| // ```ignore (diagnostics) |
| // bar::<<<<T as Foo>::Output>(); |
| // ^^ help: remove extra angle brackets |
| // ``` |
| // |
| // Parsing of the left angle brackets starts in this function. We start by parsing the |
| // `<` token (incrementing the counter of unmatched angle brackets on `Parser` via |
| // `eat_lt`): |
| // |
| // *Upcoming tokens:* `<<<<T as Foo>::Output>;` |
| // *Unmatched count:* 1 |
| // *`parse_path_segment` calls deep:* 0 |
| // |
| // This has the effect of recursing as this function is called if a `<` character |
| // is found within the expected generic arguments: |
| // |
| // *Upcoming tokens:* `<<<T as Foo>::Output>;` |
| // *Unmatched count:* 2 |
| // *`parse_path_segment` calls deep:* 1 |
| // |
| // Eventually we will have recursed until having consumed all of the `<` tokens and |
| // this will be reflected in the count: |
| // |
| // *Upcoming tokens:* `T as Foo>::Output>;` |
| // *Unmatched count:* 4 |
| // `parse_path_segment` calls deep:* 3 |
| // |
| // The parser will continue until reaching the first `>` - this will decrement the |
| // unmatched angle bracket count and return to the parent invocation of this function |
| // having succeeded in parsing: |
| // |
| // *Upcoming tokens:* `::Output>;` |
| // *Unmatched count:* 3 |
| // *`parse_path_segment` calls deep:* 2 |
| // |
| // This will continue until the next `>` character which will also return successfully |
| // to the parent invocation of this function and decrement the count: |
| // |
| // *Upcoming tokens:* `;` |
| // *Unmatched count:* 2 |
| // *`parse_path_segment` calls deep:* 1 |
| // |
| // At this point, this function will expect to find another matching `>` character but |
| // won't be able to and will return an error. This will continue all the way up the |
| // call stack until the first invocation: |
| // |
| // *Upcoming tokens:* `;` |
| // *Unmatched count:* 2 |
| // *`parse_path_segment` calls deep:* 0 |
| // |
| // In doing this, we have managed to work out how many unmatched leading left angle |
| // brackets there are, but we cannot recover as the unmatched angle brackets have |
| // already been consumed. To remedy this, we keep a snapshot of the parser state |
| // before we do the above. We can then inspect whether we ended up with a parsing error |
| // and unmatched left angle brackets and if so, restore the parser state before we |
| // consumed any `<` characters to emit an error and consume the erroneous tokens to |
| // recover by attempting to parse again. |
| // |
| // In practice, the recursion of this function is indirect and there will be other |
| // locations that consume some `<` characters - as long as we update the count when |
| // this happens, it isn't an issue. |
| |
| let is_first_invocation = style == PathStyle::Expr; |
| // Take a snapshot before attempting to parse - we can restore this later. |
| let snapshot = if is_first_invocation { |
| Some(self.clone()) |
| } else { |
| None |
| }; |
| |
| debug!("parse_generic_args_with_leading_angle_bracket_recovery: (snapshotting)"); |
| match self.parse_generic_args() { |
| Ok(value) => Ok(value), |
| Err(ref mut e) if is_first_invocation && self.unmatched_angle_bracket_count > 0 => { |
| // Cancel error from being unable to find `>`. We know the error |
| // must have been this due to a non-zero unmatched angle bracket |
| // count. |
| e.cancel(); |
| |
| // Swap `self` with our backup of the parser state before attempting to parse |
| // generic arguments. |
| let snapshot = mem::replace(self, snapshot.unwrap()); |
| |
| debug!( |
| "parse_generic_args_with_leading_angle_bracket_recovery: (snapshot failure) \ |
| snapshot.count={:?}", |
| snapshot.unmatched_angle_bracket_count, |
| ); |
| |
| // Eat the unmatched angle brackets. |
| for _ in 0..snapshot.unmatched_angle_bracket_count { |
| self.eat_lt(); |
| } |
| |
| // Make a span over ${unmatched angle bracket count} characters. |
| let span = lo.with_hi( |
| lo.lo() + BytePos(snapshot.unmatched_angle_bracket_count) |
| ); |
| let plural = snapshot.unmatched_angle_bracket_count > 1; |
| self.diagnostic() |
| .struct_span_err( |
| span, |
| &format!( |
| "unmatched angle bracket{}", |
| if plural { "s" } else { "" } |
| ), |
| ) |
| .span_suggestion( |
| span, |
| &format!( |
| "remove extra angle bracket{}", |
| if plural { "s" } else { "" } |
| ), |
| String::new(), |
| Applicability::MachineApplicable, |
| ) |
| .emit(); |
| |
| // Try again without unmatched angle bracket characters. |
| self.parse_generic_args() |
| }, |
| Err(e) => Err(e), |
| } |
| } |
| |
| /// Parses (possibly empty) list of lifetime and type arguments and associated type bindings, |
| /// possibly including trailing comma. |
| fn parse_generic_args(&mut self) -> PResult<'a, (Vec<GenericArg>, Vec<TypeBinding>)> { |
| let mut args = Vec::new(); |
| let mut bindings = Vec::new(); |
| let mut misplaced_assoc_ty_bindings: Vec<Span> = Vec::new(); |
| let mut assoc_ty_bindings: Vec<Span> = Vec::new(); |
| |
| let args_lo = self.span; |
| |
| loop { |
| if self.check_lifetime() && self.look_ahead(1, |t| !t.is_like_plus()) { |
| // Parse lifetime argument. |
| args.push(GenericArg::Lifetime(self.expect_lifetime())); |
| misplaced_assoc_ty_bindings.append(&mut assoc_ty_bindings); |
| } else if self.check_ident() && self.look_ahead(1, |t| t == &token::Eq) { |
| // Parse associated type binding. |
| let lo = self.span; |
| let ident = self.parse_ident()?; |
| self.bump(); |
| let ty = self.parse_ty()?; |
| let span = lo.to(self.prev_span); |
| bindings.push(TypeBinding { |
| id: ast::DUMMY_NODE_ID, |
| ident, |
| ty, |
| span, |
| }); |
| assoc_ty_bindings.push(span); |
| } else if self.check_const_arg() { |
| // FIXME(const_generics): to distinguish between idents for types and consts, |
| // we should introduce a GenericArg::Ident in the AST and distinguish when |
| // lowering to the HIR. For now, idents for const args are not permitted. |
| |
| // Parse const argument. |
| let expr = if let token::OpenDelim(token::Brace) = self.token { |
| self.parse_block_expr(None, self.span, BlockCheckMode::Default, ThinVec::new())? |
| } else if self.token.is_ident() { |
| // FIXME(const_generics): to distinguish between idents for types and consts, |
| // we should introduce a GenericArg::Ident in the AST and distinguish when |
| // lowering to the HIR. For now, idents for const args are not permitted. |
| return Err( |
| self.fatal("identifiers may currently not be used for const generics") |
| ); |
| } else { |
| // FIXME(const_generics): this currently conflicts with emplacement syntax |
| // with negative integer literals. |
| self.parse_literal_maybe_minus()? |
| }; |
| let value = AnonConst { |
| id: ast::DUMMY_NODE_ID, |
| value: expr, |
| }; |
| args.push(GenericArg::Const(value)); |
| misplaced_assoc_ty_bindings.append(&mut assoc_ty_bindings); |
| } else if self.check_type() { |
| // Parse type argument. |
| args.push(GenericArg::Type(self.parse_ty()?)); |
| misplaced_assoc_ty_bindings.append(&mut assoc_ty_bindings); |
| } else { |
| break |
| } |
| |
| if !self.eat(&token::Comma) { |
| break |
| } |
| } |
| |
| // FIXME: we would like to report this in ast_validation instead, but we currently do not |
| // preserve ordering of generic parameters with respect to associated type binding, so we |
| // lose that information after parsing. |
| if misplaced_assoc_ty_bindings.len() > 0 { |
| let mut err = self.struct_span_err( |
| args_lo.to(self.prev_span), |
| "associated type bindings must be declared after generic parameters", |
| ); |
| for span in misplaced_assoc_ty_bindings { |
| err.span_label( |
| span, |
| "this associated type binding should be moved after the generic parameters", |
| ); |
| } |
| err.emit(); |
| } |
| |
| Ok((args, bindings)) |
| } |
| |
| /// Parses an optional where-clause and places it in `generics`. |
| /// |
| /// ```ignore (only-for-syntax-highlight) |
| /// where T : Trait<U, V> + 'b, 'a : 'b |
| /// ``` |
| fn parse_where_clause(&mut self) -> PResult<'a, WhereClause> { |
| maybe_whole!(self, NtWhereClause, |x| x); |
| |
| let mut where_clause = WhereClause { |
| id: ast::DUMMY_NODE_ID, |
| predicates: Vec::new(), |
| span: syntax_pos::DUMMY_SP, |
| }; |
| |
| if !self.eat_keyword(keywords::Where) { |
| return Ok(where_clause); |
| } |
| let lo = self.prev_span; |
| |
| // We are considering adding generics to the `where` keyword as an alternative higher-rank |
| // parameter syntax (as in `where<'a>` or `where<T>`. To avoid that being a breaking |
| // change we parse those generics now, but report an error. |
| if self.choose_generics_over_qpath() { |
| let generics = self.parse_generics()?; |
| self.struct_span_err( |
| generics.span, |
| "generic parameters on `where` clauses are reserved for future use", |
| ) |
| .span_label(generics.span, "currently unsupported") |
| .emit(); |
| } |
| |
| loop { |
| let lo = self.span; |
| if self.check_lifetime() && self.look_ahead(1, |t| !t.is_like_plus()) { |
| let lifetime = self.expect_lifetime(); |
| // Bounds starting with a colon are mandatory, but possibly empty. |
| self.expect(&token::Colon)?; |
| let bounds = self.parse_lt_param_bounds(); |
| where_clause.predicates.push(ast::WherePredicate::RegionPredicate( |
| ast::WhereRegionPredicate { |
| span: lo.to(self.prev_span), |
| lifetime, |
| bounds, |
| } |
| )); |
| } else if self.check_type() { |
| // Parse optional `for<'a, 'b>`. |
| // This `for` is parsed greedily and applies to the whole predicate, |
| // the bounded type can have its own `for` applying only to it. |
| // Example 1: for<'a> Trait1<'a>: Trait2<'a /*ok*/> |
| // Example 2: (for<'a> Trait1<'a>): Trait2<'a /*not ok*/> |
| // Example 3: for<'a> for<'b> Trait1<'a, 'b>: Trait2<'a /*ok*/, 'b /*not ok*/> |
| let lifetime_defs = self.parse_late_bound_lifetime_defs()?; |
| |
| // Parse type with mandatory colon and (possibly empty) bounds, |
| // or with mandatory equality sign and the second type. |
| let ty = self.parse_ty()?; |
| if self.eat(&token::Colon) { |
| let bounds = self.parse_generic_bounds(None)?; |
| where_clause.predicates.push(ast::WherePredicate::BoundPredicate( |
| ast::WhereBoundPredicate { |
| span: lo.to(self.prev_span), |
| bound_generic_params: lifetime_defs, |
| bounded_ty: ty, |
| bounds, |
| } |
| )); |
| // FIXME: Decide what should be used here, `=` or `==`. |
| // FIXME: We are just dropping the binders in lifetime_defs on the floor here. |
| } else if self.eat(&token::Eq) || self.eat(&token::EqEq) { |
| let rhs_ty = self.parse_ty()?; |
| where_clause.predicates.push(ast::WherePredicate::EqPredicate( |
| ast::WhereEqPredicate { |
| span: lo.to(self.prev_span), |
| lhs_ty: ty, |
| rhs_ty, |
| id: ast::DUMMY_NODE_ID, |
| } |
| )); |
| } else { |
| return self.unexpected(); |
| } |
| } else { |
| break |
| } |
| |
| if !self.eat(&token::Comma) { |
| break |
| } |
| } |
| |
| where_clause.span = lo.to(self.prev_span); |
| Ok(where_clause) |
| } |
| |
| fn parse_fn_args(&mut self, named_args: bool, allow_variadic: bool) |
| -> PResult<'a, (Vec<Arg> , bool)> { |
| self.expect(&token::OpenDelim(token::Paren))?; |
| |
| let sp = self.span; |
| let mut variadic = false; |
| let (args, recovered): (Vec<Option<Arg>>, bool) = |
| self.parse_seq_to_before_end( |
| &token::CloseDelim(token::Paren), |
| SeqSep::trailing_allowed(token::Comma), |
| |p| { |
| if p.token == token::DotDotDot { |
| p.bump(); |
| variadic = true; |
| if allow_variadic { |
| if p.token != token::CloseDelim(token::Paren) { |
| let span = p.span; |
| p.span_err(span, |
| "`...` must be last in argument list for variadic function"); |
| } |
| Ok(None) |
| } else { |
| let span = p.prev_span; |
| if p.token == token::CloseDelim(token::Paren) { |
| // continue parsing to present any further errors |
| p.struct_span_err( |
| span, |
| "only foreign functions are allowed to be variadic" |
| ).emit(); |
| Ok(Some(dummy_arg(span))) |
| } else { |
| // this function definition looks beyond recovery, stop parsing |
| p.span_err(span, |
| "only foreign functions are allowed to be variadic"); |
| Ok(None) |
| } |
| } |
| } else { |
| match p.parse_arg_general(named_args, false) { |
| Ok(arg) => Ok(Some(arg)), |
| Err(mut e) => { |
| e.emit(); |
| let lo = p.prev_span; |
| // Skip every token until next possible arg or end. |
| p.eat_to_tokens(&[&token::Comma, &token::CloseDelim(token::Paren)]); |
| // Create a placeholder argument for proper arg count (#34264). |
| let span = lo.to(p.prev_span); |
| Ok(Some(dummy_arg(span))) |
| } |
| } |
| } |
| } |
| )?; |
| |
| if !recovered { |
| self.eat(&token::CloseDelim(token::Paren)); |
| } |
| |
| let args: Vec<_> = args.into_iter().filter_map(|x| x).collect(); |
| |
| if variadic && args.is_empty() { |
| self.span_err(sp, |
| "variadic function must be declared with at least one named argument"); |
| } |
| |
| Ok((args, variadic)) |
| } |
| |
| /// Parses the argument list and result type of a function declaration. |
| fn parse_fn_decl(&mut self, allow_variadic: bool) -> PResult<'a, P<FnDecl>> { |
| |
| let (args, variadic) = self.parse_fn_args(true, allow_variadic)?; |
| let ret_ty = self.parse_ret_ty(true)?; |
| |
| Ok(P(FnDecl { |
| inputs: args, |
| output: ret_ty, |
| variadic, |
| })) |
| } |
| |
| /// Returns the parsed optional self argument and whether a self shortcut was used. |
| fn parse_self_arg(&mut self) -> PResult<'a, Option<Arg>> { |
| let expect_ident = |this: &mut Self| match this.token { |
| // Preserve hygienic context. |
| token::Ident(ident, _) => |
| { let span = this.span; this.bump(); Ident::new(ident.name, span) } |
| _ => unreachable!() |
| }; |
| let isolated_self = |this: &mut Self, n| { |
| this.look_ahead(n, |t| t.is_keyword(keywords::SelfLower)) && |
| this.look_ahead(n + 1, |t| t != &token::ModSep) |
| }; |
| |
| // Parse optional self parameter of a method. |
| // Only a limited set of initial token sequences is considered self parameters, anything |
| // else is parsed as a normal function parameter list, so some lookahead is required. |
| let eself_lo = self.span; |
| let (eself, eself_ident, eself_hi) = match self.token { |
| token::BinOp(token::And) => { |
| // &self |
| // &mut self |
| // &'lt self |
| // &'lt mut self |
| // ¬_self |
| (if isolated_self(self, 1) { |
| self.bump(); |
| SelfKind::Region(None, Mutability::Immutable) |
| } else if self.look_ahead(1, |t| t.is_keyword(keywords::Mut)) && |
| isolated_self(self, 2) { |
| self.bump(); |
| self.bump(); |
| SelfKind::Region(None, Mutability::Mutable) |
| } else if self.look_ahead(1, |t| t.is_lifetime()) && |
| isolated_self(self, 2) { |
| self.bump(); |
| let lt = self.expect_lifetime(); |
| SelfKind::Region(Some(lt), Mutability::Immutable) |
| } else if self.look_ahead(1, |t| t.is_lifetime()) && |
| self.look_ahead(2, |t| t.is_keyword(keywords::Mut)) && |
| isolated_self(self, 3) { |
| self.bump(); |
| let lt = self.expect_lifetime(); |
| self.bump(); |
| SelfKind::Region(Some(lt), Mutability::Mutable) |
| } else { |
| return Ok(None); |
| }, expect_ident(self), self.prev_span) |
| } |
| token::BinOp(token::Star) => { |
| // *self |
| // *const self |
| // *mut self |
| // *not_self |
| // Emit special error for `self` cases. |
| let msg = "cannot pass `self` by raw pointer"; |
| (if isolated_self(self, 1) { |
| self.bump(); |
| self.struct_span_err(self.span, msg) |
| .span_label(self.span, msg) |
| .emit(); |
| SelfKind::Value(Mutability::Immutable) |
| } else if self.look_ahead(1, |t| t.is_mutability()) && |
| isolated_self(self, 2) { |
| self.bump(); |
| self.bump(); |
| self.struct_span_err(self.span, msg) |
| .span_label(self.span, msg) |
| .emit(); |
| SelfKind::Value(Mutability::Immutable) |
| } else { |
| return Ok(None); |
| }, expect_ident(self), self.prev_span) |
| } |
| token::Ident(..) => { |
| if isolated_self(self, 0) { |
| // self |
| // self: TYPE |
| let eself_ident = expect_ident(self); |
| let eself_hi = self.prev_span; |
| (if self.eat(&token::Colon) { |
| let ty = self.parse_ty()?; |
| SelfKind::Explicit(ty, Mutability::Immutable) |
| } else { |
| SelfKind::Value(Mutability::Immutable) |
| }, eself_ident, eself_hi) |
| } else if self.token.is_keyword(keywords::Mut) && |
| isolated_self(self, 1) { |
| // mut self |
| // mut self: TYPE |
| self.bump(); |
| let eself_ident = expect_ident(self); |
| let eself_hi = self.prev_span; |
| (if self.eat(&token::Colon) { |
| let ty = self.parse_ty()?; |
| SelfKind::Explicit(ty, Mutability::Mutable) |
| } else { |
| SelfKind::Value(Mutability::Mutable) |
| }, eself_ident, eself_hi) |
| } else { |
| return Ok(None); |
| } |
| } |
| _ => return Ok(None), |
| }; |
| |
| let eself = source_map::respan(eself_lo.to(eself_hi), eself); |
| Ok(Some(Arg::from_self(eself, eself_ident))) |
| } |
| |
| /// Parses the parameter list and result type of a function that may have a `self` parameter. |
| fn parse_fn_decl_with_self<F>(&mut self, parse_arg_fn: F) -> PResult<'a, P<FnDecl>> |
| where F: FnMut(&mut Parser<'a>) -> PResult<'a, Arg>, |
| { |
| self.expect(&token::OpenDelim(token::Paren))?; |
| |
| // Parse optional self argument |
| let self_arg = self.parse_self_arg()?; |
| |
| // Parse the rest of the function parameter list. |
| let sep = SeqSep::trailing_allowed(token::Comma); |
| let (fn_inputs, recovered) = if let Some(self_arg) = self_arg { |
| if self.check(&token::CloseDelim(token::Paren)) { |
| (vec![self_arg], false) |
| } else if self.eat(&token::Comma) { |
| let mut fn_inputs = vec![self_arg]; |
| let (mut input, recovered) = self.parse_seq_to_before_end( |
| &token::CloseDelim(token::Paren), sep, parse_arg_fn)?; |
| fn_inputs.append(&mut input); |
| (fn_inputs, recovered) |
| } else { |
| return self.unexpected(); |
| } |
| } else { |
| self.parse_seq_to_before_end(&token::CloseDelim(token::Paren), sep, parse_arg_fn)? |
| }; |
| |
| if !recovered { |
| // Parse closing paren and return type. |
| self.expect(&token::CloseDelim(token::Paren))?; |
| } |
| Ok(P(FnDecl { |
| inputs: fn_inputs, |
| output: self.parse_ret_ty(true)?, |
| variadic: false |
| })) |
| } |
| |
| /// Parses the `|arg, arg|` header of a closure. |
| fn parse_fn_block_decl(&mut self) -> PResult<'a, P<FnDecl>> { |
| let inputs_captures = { |
| if self.eat(&token::OrOr) { |
| Vec::new() |
| } else { |
| self.expect(&token::BinOp(token::Or))?; |
| let args = self.parse_seq_to_before_tokens( |
| &[&token::BinOp(token::Or), &token::OrOr], |
| SeqSep::trailing_allowed(token::Comma), |
| TokenExpectType::NoExpect, |
| |p| p.parse_fn_block_arg() |
| )?.0; |
| self.expect_or()?; |
| args |
| } |
| }; |
| let output = self.parse_ret_ty(true)?; |
| |
| Ok(P(FnDecl { |
| inputs: inputs_captures, |
| output, |
| variadic: false |
| })) |
| } |
| |
| /// Parses the name and optional generic types of a function header. |
| fn parse_fn_header(&mut self) -> PResult<'a, (Ident, ast::Generics)> { |
| let id = self.parse_ident()?; |
| let generics = self.parse_generics()?; |
| Ok((id, generics)) |
| } |
| |
| fn mk_item(&mut self, span: Span, ident: Ident, node: ItemKind, vis: Visibility, |
| attrs: Vec<Attribute>) -> P<Item> { |
| P(Item { |
| ident, |
| attrs, |
| id: ast::DUMMY_NODE_ID, |
| node, |
| vis, |
| span, |
| tokens: None, |
| }) |
| } |
| |
| /// Parses an item-position function declaration. |
| fn parse_item_fn(&mut self, |
| unsafety: Unsafety, |
| asyncness: IsAsync, |
| constness: Spanned<Constness>, |
| abi: Abi) |
| -> PResult<'a, ItemInfo> { |
| let (ident, mut generics) = self.parse_fn_header()?; |
| let decl = self.parse_fn_decl(false)?; |
| generics.where_clause = self.parse_where_clause()?; |
| let (inner_attrs, body) = self.parse_inner_attrs_and_block()?; |
| let header = FnHeader { unsafety, asyncness, constness, abi }; |
| Ok((ident, ItemKind::Fn(decl, header, generics, body), Some(inner_attrs))) |
| } |
| |
| /// Returns `true` if we are looking at `const ID` |
| /// (returns `false` for things like `const fn`, etc.). |
| fn is_const_item(&mut self) -> bool { |
| self.token.is_keyword(keywords::Const) && |
| !self.look_ahead(1, |t| t.is_keyword(keywords::Fn)) && |
| !self.look_ahead(1, |t| t.is_keyword(keywords::Unsafe)) |
| } |
| |
| /// Parses all the "front matter" for a `fn` declaration, up to |
| /// and including the `fn` keyword: |
| /// |
| /// - `const fn` |
| /// - `unsafe fn` |
| /// - `const unsafe fn` |
| /// - `extern fn` |
| /// - etc. |
| fn parse_fn_front_matter(&mut self) |
| -> PResult<'a, ( |
| Spanned<Constness>, |
| Unsafety, |
| IsAsync, |
| Abi |
| )> |
| { |
| let is_const_fn = self.eat_keyword(keywords::Const); |
| let const_span = self.prev_span; |
| let unsafety = self.parse_unsafety(); |
| let asyncness = self.parse_asyncness(); |
| let (constness, unsafety, abi) = if is_const_fn { |
| (respan(const_span, Constness::Const), unsafety, Abi::Rust) |
| } else { |
| let abi = if self.eat_keyword(keywords::Extern) { |
| self.parse_opt_abi()?.unwrap_or(Abi::C) |
| } else { |
| Abi::Rust |
| }; |
| (respan(self.prev_span, Constness::NotConst), unsafety, abi) |
| }; |
| self.expect_keyword(keywords::Fn)?; |
| Ok((constness, unsafety, asyncness, abi)) |
| } |
| |
| /// Parses an impl item. |
| pub fn parse_impl_item(&mut self, at_end: &mut bool) -> PResult<'a, ImplItem> { |
| maybe_whole!(self, NtImplItem, |x| x); |
| let attrs = self.parse_outer_attributes()?; |
| let (mut item, tokens) = self.collect_tokens(|this| { |
| this.parse_impl_item_(at_end, attrs) |
| })?; |
| |
| // See `parse_item` for why this clause is here. |
| if !item.attrs.iter().any(|attr| attr.style == AttrStyle::Inner) { |
| item.tokens = Some(tokens); |
| } |
| Ok(item) |
| } |
| |
| fn parse_impl_item_(&mut self, |
| at_end: &mut bool, |
| mut attrs: Vec<Attribute>) -> PResult<'a, ImplItem> { |
| let lo = self.span; |
| let vis = self.parse_visibility(false)?; |
| let defaultness = self.parse_defaultness(); |
| let (name, node, generics) = if let Some(type_) = self.eat_type() { |
| let (name, alias, generics) = type_?; |
| let kind = match alias { |
| AliasKind::Weak(typ) => ast::ImplItemKind::Type(typ), |
| AliasKind::Existential(bounds) => ast::ImplItemKind::Existential(bounds), |
| }; |
| (name, kind, generics) |
| } else if self.is_const_item() { |
| // This parses the grammar: |
| // ImplItemConst = "const" Ident ":" Ty "=" Expr ";" |
| self.expect_keyword(keywords::Const)?; |
| let name = self.parse_ident()?; |
| self.expect(&token::Colon)?; |
| let typ = self.parse_ty()?; |
| self.expect(&token::Eq)?; |
| let expr = self.parse_expr()?; |
| self.expect(&token::Semi)?; |
| (name, ast::ImplItemKind::Const(typ, expr), ast::Generics::default()) |
| } else { |
| let (name, inner_attrs, generics, node) = self.parse_impl_method(&vis, at_end)?; |
| attrs.extend(inner_attrs); |
| (name, node, generics) |
| }; |
| |
| Ok(ImplItem { |
| id: ast::DUMMY_NODE_ID, |
| span: lo.to(self.prev_span), |
| ident: name, |
| vis, |
| defaultness, |
| attrs, |
| generics, |
| node, |
| tokens: None, |
| }) |
| } |
| |
| fn complain_if_pub_macro(&mut self, vis: &VisibilityKind, sp: Span) { |
| match *vis { |
| VisibilityKind::Inherited => {} |
| _ => { |
| let is_macro_rules: bool = match self.token { |
| token::Ident(sid, _) => sid.name == Symbol::intern("macro_rules"), |
| _ => false, |
| }; |
| let mut err = if is_macro_rules { |
| let mut err = self.diagnostic() |
| .struct_span_err(sp, "can't qualify macro_rules invocation with `pub`"); |
| err.span_suggestion( |
| sp, |
| "try exporting the macro", |
| "#[macro_export]".to_owned(), |
| Applicability::MaybeIncorrect // speculative |
| ); |
| err |
| } else { |
| let mut err = self.diagnostic() |
| .struct_span_err(sp, "can't qualify macro invocation with `pub`"); |
| err.help("try adjusting the macro to put `pub` inside the invocation"); |
| err |
| }; |
| err.emit(); |
| } |
| } |
| } |
| |
| fn missing_assoc_item_kind_err(&mut self, item_type: &str, prev_span: Span) |
| -> DiagnosticBuilder<'a> |
| { |
| let expected_kinds = if item_type == "extern" { |
| "missing `fn`, `type`, or `static`" |
| } else { |
| "missing `fn`, `type`, or `const`" |
| }; |
| |
| // Given this code `path(`, it seems like this is not |
| // setting the visibility of a macro invocation, but rather |
| // a mistyped method declaration. |
| // Create a diagnostic pointing out that `fn` is missing. |
| // |
| // x | pub path(&self) { |
| // | ^ missing `fn`, `type`, or `const` |
| // pub path( |
| // ^^ `sp` below will point to this |
| let sp = prev_span.between(self.prev_span); |
| let mut err = self.diagnostic().struct_span_err( |
| sp, |
| &format!("{} for {}-item declaration", |
| expected_kinds, item_type)); |
| err.span_label(sp, expected_kinds); |
| err |
| } |
| |
| /// Parse a method or a macro invocation in a trait impl. |
| fn parse_impl_method(&mut self, vis: &Visibility, at_end: &mut bool) |
| -> PResult<'a, (Ident, Vec<Attribute>, ast::Generics, |
| ast::ImplItemKind)> { |
| // code copied from parse_macro_use_or_failure... abstraction! |
| if let Some(mac) = self.parse_assoc_macro_invoc("impl", Some(vis), at_end)? { |
| // method macro |
| Ok((keywords::Invalid.ident(), vec![], ast::Generics::default(), |
| ast::ImplItemKind::Macro(mac))) |
| } else { |
| let (constness, unsafety, asyncness, abi) = self.parse_fn_front_matter()?; |
| let ident = self.parse_ident()?; |
| let mut generics = self.parse_generics()?; |
| let decl = self.parse_fn_decl_with_self(|p| p.parse_arg())?; |
| generics.where_clause = self.parse_where_clause()?; |
| *at_end = true; |
| let (inner_attrs, body) = self.parse_inner_attrs_and_block()?; |
| let header = ast::FnHeader { abi, unsafety, constness, asyncness }; |
| Ok((ident, inner_attrs, generics, ast::ImplItemKind::Method( |
| ast::MethodSig { header, decl }, |
| body |
| ))) |
| } |
| } |
| |
| /// Parses `trait Foo { ... }` or `trait Foo = Bar;`. |
| fn parse_item_trait(&mut self, is_auto: IsAuto, unsafety: Unsafety) -> PResult<'a, ItemInfo> { |
| let ident = self.parse_ident()?; |
| let mut tps = self.parse_generics()?; |
| |
| // Parse optional colon and supertrait bounds. |
| let bounds = if self.eat(&token::Colon) { |
| self.parse_generic_bounds(Some(self.prev_span))? |
| } else { |
| Vec::new() |
| }; |
| |
| if self.eat(&token::Eq) { |
| // it's a trait alias |
| let bounds = self.parse_generic_bounds(None)?; |
| tps.where_clause = self.parse_where_clause()?; |
| self.expect(&token::Semi)?; |
| if is_auto == IsAuto::Yes { |
| let msg = "trait aliases cannot be `auto`"; |
| self.struct_span_err(self.prev_span, msg) |
| .span_label(self.prev_span, msg) |
| .emit(); |
| } |
| if unsafety != Unsafety::Normal { |
| let msg = "trait aliases cannot be `unsafe`"; |
| self.struct_span_err(self.prev_span, msg) |
| .span_label(self.prev_span, msg) |
| .emit(); |
| } |
| Ok((ident, ItemKind::TraitAlias(tps, bounds), None)) |
| } else { |
| // it's a normal trait |
| tps.where_clause = self.parse_where_clause()?; |
| self.expect(&token::OpenDelim(token::Brace))?; |
| let mut trait_items = vec![]; |
| while !self.eat(&token::CloseDelim(token::Brace)) { |
| let mut at_end = false; |
| match self.parse_trait_item(&mut at_end) { |
| Ok(item) => trait_items.push(item), |
| Err(mut e) => { |
| e.emit(); |
| if !at_end { |
| self.recover_stmt_(SemiColonMode::Break, BlockMode::Break); |
| } |
| } |
| } |
| } |
| Ok((ident, ItemKind::Trait(is_auto, unsafety, tps, bounds, trait_items), None)) |
| } |
| } |
| |
| fn choose_generics_over_qpath(&self) -> bool { |
| // There's an ambiguity between generic parameters and qualified paths in impls. |
| // If we see `<` it may start both, so we have to inspect some following tokens. |
| // The following combinations can only start generics, |
| // but not qualified paths (with one exception): |
| // `<` `>` - empty generic parameters |
| // `<` `#` - generic parameters with attributes |
| // `<` (LIFETIME|IDENT) `>` - single generic parameter |
| // `<` (LIFETIME|IDENT) `,` - first generic parameter in a list |
| // `<` (LIFETIME|IDENT) `:` - generic parameter with bounds |
| // `<` (LIFETIME|IDENT) `=` - generic parameter with a default |
| // `<` const - generic const parameter |
| // The only truly ambiguous case is |
| // `<` IDENT `>` `::` IDENT ... |
| // we disambiguate it in favor of generics (`impl<T> ::absolute::Path<T> { ... }`) |
| // because this is what almost always expected in practice, qualified paths in impls |
| // (`impl <Type>::AssocTy { ... }`) aren't even allowed by type checker at the moment. |
| self.token == token::Lt && |
| (self.look_ahead(1, |t| t == &token::Pound || t == &token::Gt) || |
| self.look_ahead(1, |t| t.is_lifetime() || t.is_ident()) && |
| self.look_ahead(2, |t| t == &token::Gt || t == &token::Comma || |
| t == &token::Colon || t == &token::Eq) || |
| self.look_ahead(1, |t| t.is_keyword(keywords::Const))) |
| } |
| |
| fn parse_impl_body(&mut self) -> PResult<'a, (Vec<ImplItem>, Vec<Attribute>)> { |
| self.expect(&token::OpenDelim(token::Brace))?; |
| let attrs = self.parse_inner_attributes()?; |
| |
| let mut impl_items = Vec::new(); |
| while !self.eat(&token::CloseDelim(token::Brace)) { |
| let mut at_end = false; |
| match self.parse_impl_item(&mut at_end) { |
| Ok(impl_item) => impl_items.push(impl_item), |
| Err(mut err) => { |
| err.emit(); |
| if !at_end { |
| self.recover_stmt_(SemiColonMode::Break, BlockMode::Break); |
| } |
| } |
| } |
| } |
| Ok((impl_items, attrs)) |
| } |
| |
| /// Parses an implementation item, `impl` keyword is already parsed. |
| /// |
| /// impl<'a, T> TYPE { /* impl items */ } |
| /// impl<'a, T> TRAIT for TYPE { /* impl items */ } |
| /// impl<'a, T> !TRAIT for TYPE { /* impl items */ } |
| /// |
| /// We actually parse slightly more relaxed grammar for better error reporting and recovery. |
| /// `impl` GENERICS `!`? TYPE `for`? (TYPE | `..`) (`where` PREDICATES)? `{` BODY `}` |
| /// `impl` GENERICS `!`? TYPE (`where` PREDICATES)? `{` BODY `}` |
| fn parse_item_impl(&mut self, unsafety: Unsafety, defaultness: Defaultness) |
| -> PResult<'a, ItemInfo> { |
| // First, parse generic parameters if necessary. |
| let mut generics = if self.choose_generics_over_qpath() { |
| self.parse_generics()? |
| } else { |
| ast::Generics::default() |
| }; |
| |
| // Disambiguate `impl !Trait for Type { ... }` and `impl ! { ... }` for the never type. |
| let polarity = if self.check(&token::Not) && self.look_ahead(1, |t| t.can_begin_type()) { |
| self.bump(); // `!` |
| ast::ImplPolarity::Negative |
| } else { |
| ast::ImplPolarity::Positive |
| }; |
| |
| // Parse both types and traits as a type, then reinterpret if necessary. |
| let ty_first = self.parse_ty()?; |
| |
| // If `for` is missing we try to recover. |
| let has_for = self.eat_keyword(keywords::For); |
| let missing_for_span = self.prev_span.between(self.span); |
| |
| let ty_second = if self.token == token::DotDot { |
| // We need to report this error after `cfg` expansion for compatibility reasons |
| self.bump(); // `..`, do not add it to expected tokens |
| Some(P(Ty { node: TyKind::Err, span: self.prev_span, id: ast::DUMMY_NODE_ID })) |
| } else if has_for || self.token.can_begin_type() { |
| Some(self.parse_ty()?) |
| } else { |
| None |
| }; |
| |
| generics.where_clause = self.parse_where_clause()?; |
| |
| let (impl_items, attrs) = self.parse_impl_body()?; |
| |
| let item_kind = match ty_second { |
| Some(ty_second) => { |
| // impl Trait for Type |
| if !has_for { |
| self.struct_span_err(missing_for_span, "missing `for` in a trait impl") |
| .span_suggestion_short( |
| missing_for_span, |
| "add `for` here", |
| " for ".to_string(), |
| Applicability::MachineApplicable, |
| ).emit(); |
| } |
| |
| let ty_first = ty_first.into_inner(); |
| let path = match ty_first.node { |
| // This notably includes paths passed through `ty` macro fragments (#46438). |
| TyKind::Path(None, path) => path, |
| _ => { |
| self.span_err(ty_first.span, "expected a trait, found type"); |
| ast::Path::from_ident(Ident::new(keywords::Invalid.name(), ty_first.span)) |
| } |
| }; |
| let trait_ref = TraitRef { path, ref_id: ty_first.id }; |
| |
| ItemKind::Impl(unsafety, polarity, defaultness, |
| generics, Some(trait_ref), ty_second, impl_items) |
| } |
| None => { |
| // impl Type |
| ItemKind::Impl(unsafety, polarity, defaultness, |
| generics, None, ty_first, impl_items) |
| } |
| }; |
| |
| Ok((keywords::Invalid.ident(), item_kind, Some(attrs))) |
| } |
| |
| fn parse_late_bound_lifetime_defs(&mut self) -> PResult<'a, Vec<GenericParam>> { |
| if self.eat_keyword(keywords::For) { |
| self.expect_lt()?; |
| let params = self.parse_generic_params()?; |
| self.expect_gt()?; |
| // We rely on AST validation to rule out invalid cases: There must not be type |
| // parameters, and the lifetime parameters must not have bounds. |
| Ok(params) |
| } else { |
| Ok(Vec::new()) |
| } |
| } |
| |
| /// Parses `struct Foo { ... }`. |
| fn parse_item_struct(&mut self) -> PResult<'a, ItemInfo> { |
| let class_name = self.parse_ident()?; |
| |
| let mut generics = self.parse_generics()?; |
| |
| // There is a special case worth noting here, as reported in issue #17904. |
| // If we are parsing a tuple struct it is the case that the where clause |
| // should follow the field list. Like so: |
| // |
| // struct Foo<T>(T) where T: Copy; |
| // |
| // If we are parsing a normal record-style struct it is the case |
| // that the where clause comes before the body, and after the generics. |
| // So if we look ahead and see a brace or a where-clause we begin |
| // parsing a record style struct. |
| // |
| // Otherwise if we look ahead and see a paren we parse a tuple-style |
| // struct. |
| |
| let vdata = if self.token.is_keyword(keywords::Where) { |
| generics.where_clause = self.parse_where_clause()?; |
| if self.eat(&token::Semi) { |
| // If we see a: `struct Foo<T> where T: Copy;` style decl. |
| VariantData::Unit(ast::DUMMY_NODE_ID) |
| } else { |
| // If we see: `struct Foo<T> where T: Copy { ... }` |
| VariantData::Struct(self.parse_record_struct_body()?, ast::DUMMY_NODE_ID) |
| } |
| // No `where` so: `struct Foo<T>;` |
| } else if self.eat(&token::Semi) { |
| VariantData::Unit(ast::DUMMY_NODE_ID) |
| // Record-style struct definition |
| } else if self.token == token::OpenDelim(token::Brace) { |
| VariantData::Struct(self.parse_record_struct_body()?, ast::DUMMY_NODE_ID) |
| // Tuple-style struct definition with optional where-clause. |
| } else if self.token == token::OpenDelim(token::Paren) { |
| let body = VariantData::Tuple(self.parse_tuple_struct_body()?, ast::DUMMY_NODE_ID); |
| generics.where_clause = self.parse_where_clause()?; |
| self.expect(&token::Semi)?; |
| body |
| } else { |
| let token_str = self.this_token_descr(); |
| let mut err = self.fatal(&format!( |
| "expected `where`, `{{`, `(`, or `;` after struct name, found {}", |
| token_str |
| )); |
| err.span_label(self.span, "expected `where`, `{`, `(`, or `;` after struct name"); |
| return Err(err); |
| }; |
| |
| Ok((class_name, ItemKind::Struct(vdata, generics), None)) |
| } |
| |
| /// Parses `union Foo { ... }`. |
| fn parse_item_union(&mut self) -> PResult<'a, ItemInfo> { |
| let class_name = self.parse_ident()?; |
| |
| let mut generics = self.parse_generics()?; |
| |
| let vdata = if self.token.is_keyword(keywords::Where) { |
| generics.where_clause = self.parse_where_clause()?; |
| VariantData::Struct(self.parse_record_struct_body()?, ast::DUMMY_NODE_ID) |
| } else if self.token == token::OpenDelim(token::Brace) { |
| VariantData::Struct(self.parse_record_struct_body()?, ast::DUMMY_NODE_ID) |
| } else { |
| let token_str = self.this_token_descr(); |
| let mut err = self.fatal(&format!( |
| "expected `where` or `{{` after union name, found {}", token_str)); |
| err.span_label(self.span, "expected `where` or `{` after union name"); |
| return Err(err); |
| }; |
| |
| Ok((class_name, ItemKind::Union(vdata, generics), None)) |
| } |
| |
| fn consume_block(&mut self, delim: token::DelimToken) { |
| let mut brace_depth = 0; |
| loop { |
| if self.eat(&token::OpenDelim(delim)) { |
| brace_depth += 1; |
| } else if self.eat(&token::CloseDelim(delim)) { |
| if brace_depth == 0 { |
| return; |
| } else { |
| brace_depth -= 1; |
| continue; |
| } |
| } else if self.token == token::Eof || self.eat(&token::CloseDelim(token::NoDelim)) { |
| return; |
| } else { |
| self.bump(); |
| } |
| } |
| } |
| |
| fn parse_record_struct_body(&mut self) -> PResult<'a, Vec<StructField>> { |
| let mut fields = Vec::new(); |
| if self.eat(&token::OpenDelim(token::Brace)) { |
| while self.token != token::CloseDelim(token::Brace) { |
| let field = self.parse_struct_decl_field().map_err(|e| { |
| self.recover_stmt(); |
| e |
| }); |
| match field { |
| Ok(field) => fields.push(field), |
| Err(mut err) => { |
| err.emit(); |
| } |
| } |
| } |
| self.eat(&token::CloseDelim(token::Brace)); |
| } else { |
| let token_str = self.this_token_descr(); |
| let mut err = self.fatal(&format!( |
| "expected `where`, or `{{` after struct name, found {}", token_str)); |
| err.span_label(self.span, "expected `where`, or `{` after struct name"); |
| return Err(err); |
| } |
| |
| Ok(fields) |
| } |
| |
| fn parse_tuple_struct_body(&mut self) -> PResult<'a, Vec<StructField>> { |
| // This is the case where we find `struct Foo<T>(T) where T: Copy;` |
| // Unit like structs are handled in parse_item_struct function |
| let fields = self.parse_unspanned_seq( |
| &token::OpenDelim(token::Paren), |
| &token::CloseDelim(token::Paren), |
| SeqSep::trailing_allowed(token::Comma), |
| |p| { |
| let attrs = p.parse_outer_attributes()?; |
| let lo = p.span; |
| let vis = p.parse_visibility(true)?; |
| let ty = p.parse_ty()?; |
| Ok(StructField { |
| span: lo.to(ty.span), |
| vis, |
| ident: None, |
| id: ast::DUMMY_NODE_ID, |
| ty, |
| attrs, |
| }) |
| })?; |
| |
| Ok(fields) |
| } |
| |
| /// Parses a structure field declaration. |
| fn parse_single_struct_field(&mut self, |
| lo: Span, |
| vis: Visibility, |
| attrs: Vec<Attribute> ) |
| -> PResult<'a, StructField> { |
| let mut seen_comma: bool = false; |
| let a_var = self.parse_name_and_ty(lo, vis, attrs)?; |
| if self.token == token::Comma { |
| seen_comma = true; |
| } |
| match self.token { |
| token::Comma => { |
| self.bump(); |
| } |
| token::CloseDelim(token::Brace) => {} |
| token::DocComment(_) => { |
| let previous_span = self.prev_span; |
| let mut err = self.span_fatal_err(self.span, Error::UselessDocComment); |
| self.bump(); // consume the doc comment |
| let comma_after_doc_seen = self.eat(&token::Comma); |
| // `seen_comma` is always false, because we are inside doc block |
| // condition is here to make code more readable |
| if seen_comma == false && comma_after_doc_seen == true { |
| seen_comma = true; |
| } |
| if comma_after_doc_seen || self.token == token::CloseDelim(token::Brace) { |
| err.emit(); |
| } else { |
| if seen_comma == false { |
| let sp = self.sess.source_map().next_point(previous_span); |
| err.span_suggestion( |
| sp, |
| "missing comma here", |
| ",".into(), |
| Applicability::MachineApplicable |
| ); |
| } |
| return Err(err); |
| } |
| } |
| _ => { |
| let sp = self.sess.source_map().next_point(self.prev_span); |
| let mut err = self.struct_span_err(sp, &format!("expected `,`, or `}}`, found {}", |
| self.this_token_descr())); |
| if self.token.is_ident() { |
| // This is likely another field; emit the diagnostic and keep going |
| err.span_suggestion( |
| sp, |
| "try adding a comma", |
| ",".into(), |
| Applicability::MachineApplicable, |
| ); |
| err.emit(); |
| } else { |
| return Err(err) |
| } |
| } |
| } |
| Ok(a_var) |
| } |
| |
| /// Parses an element of a struct declaration. |
| fn parse_struct_decl_field(&mut self) -> PResult<'a, StructField> { |
| let attrs = self.parse_outer_attributes()?; |
| let lo = self.span; |
| let vis = self.parse_visibility(false)?; |
| self.parse_single_struct_field(lo, vis, attrs) |
| } |
| |
| /// Parses `pub`, `pub(crate)` and `pub(in path)` plus shortcuts `crate` for `pub(crate)`, |
| /// `pub(self)` for `pub(in self)` and `pub(super)` for `pub(in super)`. |
| /// If the following element can't be a tuple (i.e., it's a function definition), then |
| /// it's not a tuple struct field), and the contents within the parentheses isn't valid, |
| /// so emit a proper diagnostic. |
| pub fn parse_visibility(&mut self, can_take_tuple: bool) -> PResult<'a, Visibility> { |
| maybe_whole!(self, NtVis, |x| x); |
| |
| self.expected_tokens.push(TokenType::Keyword(keywords::Crate)); |
| if self.is_crate_vis() { |
| self.bump(); // `crate` |
| return Ok(respan(self.prev_span, VisibilityKind::Crate(CrateSugar::JustCrate))); |
| } |
| |
| if !self.eat_keyword(keywords::Pub) { |
| // We need a span for our `Spanned<VisibilityKind>`, but there's inherently no |
| // keyword to grab a span from for inherited visibility; an empty span at the |
| // beginning of the current token would seem to be the "Schelling span". |
| return Ok(respan(self.span.shrink_to_lo(), VisibilityKind::Inherited)) |
| } |
| let lo = self.prev_span; |
| |
| if self.check(&token::OpenDelim(token::Paren)) { |
| // We don't `self.bump()` the `(` yet because this might be a struct definition where |
| // `()` or a tuple might be allowed. For example, `struct Struct(pub (), pub (usize));`. |
| // Because of this, we only `bump` the `(` if we're assured it is appropriate to do so |
| // by the following tokens. |
| if self.look_ahead(1, |t| t.is_keyword(keywords::Crate)) { |
| // `pub(crate)` |
| self.bump(); // `(` |
| self.bump(); // `crate` |
| self.expect(&token::CloseDelim(token::Paren))?; // `)` |
| let vis = respan( |
| lo.to(self.prev_span), |
| VisibilityKind::Crate(CrateSugar::PubCrate), |
| ); |
| return Ok(vis) |
| } else if self.look_ahead(1, |t| t.is_keyword(keywords::In)) { |
| // `pub(in path)` |
| self.bump(); // `(` |
| self.bump(); // `in` |
| let path = self.parse_path(PathStyle::Mod)?; // `path` |
| self.expect(&token::CloseDelim(token::Paren))?; // `)` |
| let vis = respan(lo.to(self.prev_span), VisibilityKind::Restricted { |
| path: P(path), |
| id: ast::DUMMY_NODE_ID, |
| }); |
| return Ok(vis) |
| } else if self.look_ahead(2, |t| t == &token::CloseDelim(token::Paren)) && |
| self.look_ahead(1, |t| t.is_keyword(keywords::Super) || |
| t.is_keyword(keywords::SelfLower)) |
| { |
| // `pub(self)` or `pub(super)` |
| self.bump(); // `(` |
| let path = self.parse_path(PathStyle::Mod)?; // `super`/`self` |
| self.expect(&token::CloseDelim(token::Paren))?; // `)` |
| let vis = respan(lo.to(self.prev_span), VisibilityKind::Restricted { |
| path: P(path), |
| id: ast::DUMMY_NODE_ID, |
| }); |
| return Ok(vis) |
| } else if !can_take_tuple { // Provide this diagnostic if this is not a tuple struct |
| // `pub(something) fn ...` or `struct X { pub(something) y: Z }` |
| self.bump(); // `(` |
| let msg = "incorrect visibility restriction"; |
| let suggestion = r##"some possible visibility restrictions are: |
| `pub(crate)`: visible only on the current crate |
| `pub(super)`: visible only in the current module's parent |
| `pub(in path::to::module)`: visible only on the specified path"##; |
| let path = self.parse_path(PathStyle::Mod)?; |
| let sp = self.prev_span; |
| let help_msg = format!("make this visible only to module `{}` with `in`", path); |
| self.expect(&token::CloseDelim(token::Paren))?; // `)` |
| let mut err = struct_span_err!(self.sess.span_diagnostic, sp, E0704, "{}", msg); |
| err.help(suggestion); |
| err.span_suggestion( |
| sp, &help_msg, format!("in {}", path), Applicability::MachineApplicable |
| ); |
| err.emit(); // emit diagnostic, but continue with public visibility |
| } |
| } |
| |
| Ok(respan(lo, VisibilityKind::Public)) |
| } |
| |
| /// Parses defaultness (i.e., `default` or nothing). |
| fn parse_defaultness(&mut self) -> Defaultness { |
| // `pub` is included for better error messages |
| if self.check_keyword(keywords::Default) && |
| self.look_ahead(1, |t| t.is_keyword(keywords::Impl) || |
| t.is_keyword(keywords::Const) || |
| t.is_keyword(keywords::Fn) || |
| t.is_keyword(keywords::Unsafe) || |
| t.is_keyword(keywords::Extern) || |
| t.is_keyword(keywords::Type) || |
| t.is_keyword(keywords::Pub)) { |
| self.bump(); // `default` |
| Defaultness::Default |
| } else { |
| Defaultness::Final |
| } |
| } |
| |
| fn maybe_consume_incorrect_semicolon(&mut self, items: &[P<Item>]) -> bool { |
| if self.eat(&token::Semi) { |
| let mut err = self.struct_span_err(self.prev_span, "expected item, found `;`"); |
| err.span_suggestion_short( |
| self.prev_span, |
| "remove this semicolon", |
| String::new(), |
| Applicability::MachineApplicable, |
| ); |
| if !items.is_empty() { |
| let previous_item = &items[items.len()-1]; |
| let previous_item_kind_name = match previous_item.node { |
| // say "braced struct" because tuple-structs and |
| // braceless-empty-struct declarations do take a semicolon |
| ItemKind::Struct(..) => Some("braced struct"), |
| ItemKind::Enum(..) => Some("enum"), |
| ItemKind::Trait(..) => Some("trait"), |
| ItemKind::Union(..) => Some("union"), |
| _ => None, |
| }; |
| if let Some(name) = previous_item_kind_name { |
| err.help(&format!("{} declarations are not followed by a semicolon", name)); |
| } |
| } |
| err.emit(); |
| true |
| } else { |
| false |
| } |
| } |
| |
| /// Given a termination token, parses all of the items in a module. |
| fn parse_mod_items(&mut self, term: &token::Token, inner_lo: Span) -> PResult<'a, Mod> { |
| let mut items = vec![]; |
| while let Some(item) = self.parse_item()? { |
| items.push(item); |
| self.maybe_consume_incorrect_semicolon(&items); |
| } |
| |
| if !self.eat(term) { |
| let token_str = self.this_token_descr(); |
| if !self.maybe_consume_incorrect_semicolon(&items) { |
| let mut err = self.fatal(&format!("expected item, found {}", token_str)); |
| err.span_label(self.span, "expected item"); |
| return Err(err); |
| } |
| } |
| |
| let hi = if self.span.is_dummy() { |
| inner_lo |
| } else { |
| self.prev_span |
| }; |
| |
| Ok(ast::Mod { |
| inner: inner_lo.to(hi), |
| items, |
| inline: true |
| }) |
| } |
| |
| fn parse_item_const(&mut self, m: Option<Mutability>) -> PResult<'a, ItemInfo> { |
| let id = if m.is_none() { self.parse_ident_or_underscore() } else { self.parse_ident() }?; |
| self.expect(&token::Colon)?; |
| let ty = self.parse_ty()?; |
| self.expect(&token::Eq)?; |
| let e = self.parse_expr()?; |
| self.expect(&token::Semi)?; |
| let item = match m { |
| Some(m) => ItemKind::Static(ty, m, e), |
| None => ItemKind::Const(ty, e), |
| }; |
| Ok((id, item, None)) |
| } |
| |
| /// Parse a `mod <foo> { ... }` or `mod <foo>;` item |
| fn parse_item_mod(&mut self, outer_attrs: &[Attribute]) -> PResult<'a, ItemInfo> { |
| let (in_cfg, outer_attrs) = { |
| let mut strip_unconfigured = crate::config::StripUnconfigured { |
| sess: self.sess, |
| features: None, // don't perform gated feature checking |
| }; |
| let mut outer_attrs = outer_attrs.to_owned(); |
| strip_unconfigured.process_cfg_attrs(&mut outer_attrs); |
| (!self.cfg_mods || strip_unconfigured.in_cfg(&outer_attrs), outer_attrs) |
| }; |
| |
| let id_span = self.span; |
| let id = self.parse_ident()?; |
| if self.eat(&token::Semi) { |
| if in_cfg && self.recurse_into_file_modules { |
| // This mod is in an external file. Let's go get it! |
| let ModulePathSuccess { path, directory_ownership, warn } = |
| self.submod_path(id, &outer_attrs, id_span)?; |
| let (module, mut attrs) = |
| self.eval_src_mod(path, directory_ownership, id.to_string(), id_span)?; |
| // Record that we fetched the mod from an external file |
| if warn { |
| let attr = Attribute { |
| id: attr::mk_attr_id(), |
| style: ast::AttrStyle::Outer, |
| path: ast::Path::from_ident(Ident::from_str("warn_directory_ownership")), |
| tokens: TokenStream::empty(), |
| is_sugared_doc: false, |
| span: syntax_pos::DUMMY_SP, |
| }; |
| attr::mark_known(&attr); |
| attrs.push(attr); |
| } |
| Ok((id, ItemKind::Mod(module), Some(attrs))) |
| } else { |
| let placeholder = ast::Mod { |
| inner: syntax_pos::DUMMY_SP, |
| items: Vec::new(), |
| inline: false |
| }; |
| Ok((id, ItemKind::Mod(placeholder), None)) |
| } |
| } else { |
| let old_directory = self.directory.clone(); |
| self.push_directory(id, &outer_attrs); |
| |
| self.expect(&token::OpenDelim(token::Brace))?; |
| let mod_inner_lo = self.span; |
| let attrs = self.parse_inner_attributes()?; |
| let module = self.parse_mod_items(&token::CloseDelim(token::Brace), mod_inner_lo)?; |
| |
| self.directory = old_directory; |
| Ok((id, ItemKind::Mod(module), Some(attrs))) |
| } |
| } |
| |
| fn push_directory(&mut self, id: Ident, attrs: &[Attribute]) { |
| if let Some(path) = attr::first_attr_value_str_by_name(attrs, "path") { |
| self.directory.path.to_mut().push(&path.as_str()); |
| self.directory.ownership = DirectoryOwnership::Owned { relative: None }; |
| } else { |
| // We have to push on the current module name in the case of relative |
| // paths in order to ensure that any additional module paths from inline |
| // `mod x { ... }` come after the relative extension. |
| // |
| // For example, a `mod z { ... }` inside `x/y.rs` should set the current |
| // directory path to `/x/y/z`, not `/x/z` with a relative offset of `y`. |
| if let DirectoryOwnership::Owned { relative } = &mut self.directory.ownership { |
| if let Some(ident) = relative.take() { // remove the relative offset |
| self.directory.path.to_mut().push(ident.as_str()); |
| } |
| } |
| self.directory.path.to_mut().push(&id.as_str()); |
| } |
| } |
| |
| pub fn submod_path_from_attr(attrs: &[Attribute], dir_path: &Path) -> Option<PathBuf> { |
| if let Some(s) = attr::first_attr_value_str_by_name(attrs, "path") { |
| let s = s.as_str(); |
| |
| // On windows, the base path might have the form |
| // `\\?\foo\bar` in which case it does not tolerate |
| // mixed `/` and `\` separators, so canonicalize |
| // `/` to `\`. |
| #[cfg(windows)] |
| let s = s.replace("/", "\\"); |
| Some(dir_path.join(s)) |
| } else { |
| None |
| } |
| } |
| |
| /// Returns a path to a module. |
| pub fn default_submod_path( |
| id: ast::Ident, |
| relative: Option<ast::Ident>, |
| dir_path: &Path, |
| source_map: &SourceMap) -> ModulePath |
| { |
| // If we're in a foo.rs file instead of a mod.rs file, |
| // we need to look for submodules in |
| // `./foo/<id>.rs` and `./foo/<id>/mod.rs` rather than |
| // `./<id>.rs` and `./<id>/mod.rs`. |
| let relative_prefix_string; |
| let relative_prefix = if let Some(ident) = relative { |
| relative_prefix_string = format!("{}{}", ident.as_str(), path::MAIN_SEPARATOR); |
| &relative_prefix_string |
| } else { |
| "" |
| }; |
| |
| let mod_name = id.to_string(); |
| let default_path_str = format!("{}{}.rs", relative_prefix, mod_name); |
| let secondary_path_str = format!("{}{}{}mod.rs", |
| relative_prefix, mod_name, path::MAIN_SEPARATOR); |
| let default_path = dir_path.join(&default_path_str); |
| let secondary_path = dir_path.join(&secondary_path_str); |
| let default_exists = source_map.file_exists(&default_path); |
| let secondary_exists = source_map.file_exists(&secondary_path); |
| |
| let result = match (default_exists, secondary_exists) { |
| (true, false) => Ok(ModulePathSuccess { |
| path: default_path, |
| directory_ownership: DirectoryOwnership::Owned { |
| relative: Some(id), |
| }, |
| warn: false, |
| }), |
| (false, true) => Ok(ModulePathSuccess { |
| path: secondary_path, |
| directory_ownership: DirectoryOwnership::Owned { |
| relative: None, |
| }, |
| warn: false, |
| }), |
| (false, false) => Err(Error::FileNotFoundForModule { |
| mod_name: mod_name.clone(), |
| default_path: default_path_str, |
| secondary_path: secondary_path_str, |
| dir_path: dir_path.display().to_string(), |
| }), |
| (true, true) => Err(Error::DuplicatePaths { |
| mod_name: mod_name.clone(), |
| default_path: default_path_str, |
| secondary_path: secondary_path_str, |
| }), |
| }; |
| |
| ModulePath { |
| name: mod_name, |
| path_exists: default_exists || secondary_exists, |
| result, |
| } |
| } |
| |
| fn submod_path(&mut self, |
| id: ast::Ident, |
| outer_attrs: &[Attribute], |
| id_sp: Span) |
| -> PResult<'a, ModulePathSuccess> { |
| if let Some(path) = Parser::submod_path_from_attr(outer_attrs, &self.directory.path) { |
| return Ok(ModulePathSuccess { |
| directory_ownership: match path.file_name().and_then(|s| s.to_str()) { |
| // All `#[path]` files are treated as though they are a `mod.rs` file. |
| // This means that `mod foo;` declarations inside `#[path]`-included |
| // files are siblings, |
| // |
| // Note that this will produce weirdness when a file named `foo.rs` is |
| // `#[path]` included and contains a `mod foo;` declaration. |
| // If you encounter this, it's your own darn fault :P |
| Some(_) => DirectoryOwnership::Owned { relative: None }, |
| _ => DirectoryOwnership::UnownedViaMod(true), |
| }, |
| path, |
| warn: false, |
| }); |
| } |
| |
| let relative = match self.directory.ownership { |
| DirectoryOwnership::Owned { relative } => relative, |
| DirectoryOwnership::UnownedViaBlock | |
| DirectoryOwnership::UnownedViaMod(_) => None, |
| }; |
| let paths = Parser::default_submod_path( |
| id, relative, &self.directory.path, self.sess.source_map()); |
| |
| match self.directory.ownership { |
| DirectoryOwnership::Owned { .. } => { |
| paths.result.map_err(|err| self.span_fatal_err(id_sp, err)) |
| }, |
| DirectoryOwnership::UnownedViaBlock => { |
| let msg = |
| "Cannot declare a non-inline module inside a block \ |
| unless it has a path attribute"; |
| let mut err = self.diagnostic().struct_span_err(id_sp, msg); |
| if paths.path_exists { |
| let msg = format!("Maybe `use` the module `{}` instead of redeclaring it", |
| paths.name); |
| err.span_note(id_sp, &msg); |
| } |
| Err(err) |
| } |
| DirectoryOwnership::UnownedViaMod(warn) => { |
| if warn { |
| if let Ok(result) = paths.result { |
| return Ok(ModulePathSuccess { warn: true, ..result }); |
| } |
| } |
| let mut err = self.diagnostic().struct_span_err(id_sp, |
| "cannot declare a new module at this location"); |
| if !id_sp.is_dummy() { |
| let src_path = self.sess.source_map().span_to_filename(id_sp); |
| if let FileName::Real(src_path) = src_path { |
| if let Some(stem) = src_path.file_stem() { |
| let mut dest_path = src_path.clone(); |
| dest_path.set_file_name(stem); |
| dest_path.push("mod.rs"); |
| err.span_note(id_sp, |
| &format!("maybe move this module `{}` to its own \ |
| directory via `{}`", src_path.display(), |
| dest_path.display())); |
| } |
| } |
| } |
| if paths.path_exists { |
| err.span_note(id_sp, |
| &format!("... or maybe `use` the module `{}` instead \ |
| of possibly redeclaring it", |
| paths.name)); |
| } |
| Err(err) |
| } |
| } |
| } |
| |
| /// Reads a module from a source file. |
| fn eval_src_mod(&mut self, |
| path: PathBuf, |
| directory_ownership: DirectoryOwnership, |
| name: String, |
| id_sp: Span) |
| -> PResult<'a, (ast::Mod, Vec<Attribute> )> { |
| let mut included_mod_stack = self.sess.included_mod_stack.borrow_mut(); |
| if let Some(i) = included_mod_stack.iter().position(|p| *p == path) { |
| let mut err = String::from("circular modules: "); |
| let len = included_mod_stack.len(); |
| for p in &included_mod_stack[i.. len] { |
| err.push_str(&p.to_string_lossy()); |
| err.push_str(" -> "); |
| } |
| err.push_str(&path.to_string_lossy()); |
| return Err(self.span_fatal(id_sp, &err[..])); |
| } |
| included_mod_stack.push(path.clone()); |
| drop(included_mod_stack); |
| |
| let mut p0 = |
| new_sub_parser_from_file(self.sess, &path, directory_ownership, Some(name), id_sp); |
| p0.cfg_mods = self.cfg_mods; |
| let mod_inner_lo = p0.span; |
| let mod_attrs = p0.parse_inner_attributes()?; |
| let mut m0 = p0.parse_mod_items(&token::Eof, mod_inner_lo)?; |
| m0.inline = false; |
| self.sess.included_mod_stack.borrow_mut().pop(); |
| Ok((m0, mod_attrs)) |
| } |
| |
| /// Parses a function declaration from a foreign module. |
| fn parse_item_foreign_fn(&mut self, vis: ast::Visibility, lo: Span, attrs: Vec<Attribute>) |
| -> PResult<'a, ForeignItem> { |
| self.expect_keyword(keywords::Fn)?; |
| |
| let (ident, mut generics) = self.parse_fn_header()?; |
| let decl = self.parse_fn_decl(true)?; |
| generics.where_clause = self.parse_where_clause()?; |
| let hi = self.span; |
| self.expect(&token::Semi)?; |
| Ok(ast::ForeignItem { |
| ident, |
| attrs, |
| node: ForeignItemKind::Fn(decl, generics), |
| id: ast::DUMMY_NODE_ID, |
| span: lo.to(hi), |
| vis, |
| }) |
| } |
| |
| /// Parses a static item from a foreign module. |
| /// Assumes that the `static` keyword is already parsed. |
| fn parse_item_foreign_static(&mut self, vis: ast::Visibility, lo: Span, attrs: Vec<Attribute>) |
| -> PResult<'a, ForeignItem> { |
| let mutbl = self.eat_keyword(keywords::Mut); |
| let ident = self.parse_ident()?; |
| self.expect(&token::Colon)?; |
| let ty = self.parse_ty()?; |
| let hi = self.span; |
| self.expect(&token::Semi)?; |
| Ok(ForeignItem { |
| ident, |
| attrs, |
| node: ForeignItemKind::Static(ty, mutbl), |
| id: ast::DUMMY_NODE_ID, |
| span: lo.to(hi), |
| vis, |
| }) |
| } |
| |
| /// Parses a type from a foreign module. |
| fn parse_item_foreign_type(&mut self, vis: ast::Visibility, lo: Span, attrs: Vec<Attribute>) |
| -> PResult<'a, ForeignItem> { |
| self.expect_keyword(keywords::Type)?; |
| |
| let ident = self.parse_ident()?; |
| let hi = self.span; |
| self.expect(&token::Semi)?; |
| Ok(ast::ForeignItem { |
| ident: ident, |
| attrs: attrs, |
| node: ForeignItemKind::Ty, |
| id: ast::DUMMY_NODE_ID, |
| span: lo.to(hi), |
| vis: vis |
| }) |
| } |
| |
| fn parse_crate_name_with_dashes(&mut self) -> PResult<'a, ast::Ident> { |
| let error_msg = "crate name using dashes are not valid in `extern crate` statements"; |
| let suggestion_msg = "if the original crate name uses dashes you need to use underscores \ |
| in the code"; |
| let mut ident = if self.token.is_keyword(keywords::SelfLower) { |
| self.parse_path_segment_ident() |
| } else { |
| self.parse_ident() |
| }?; |
| let mut idents = vec![]; |
| let mut replacement = vec![]; |
| let mut fixed_crate_name = false; |
| // Accept `extern crate name-like-this` for better diagnostics |
| let dash = token::Token::BinOp(token::BinOpToken::Minus); |
| if self.token == dash { // Do not include `-` as part of the expected tokens list |
| while self.eat(&dash) { |
| fixed_crate_name = true; |
| replacement.push((self.prev_span, "_".to_string())); |
| idents.push(self.parse_ident()?); |
| } |
| } |
| if fixed_crate_name { |
| let fixed_name_sp = ident.span.to(idents.last().unwrap().span); |
| let mut fixed_name = format!("{}", ident.name); |
| for part in idents { |
| fixed_name.push_str(&format!("_{}", part.name)); |
| } |
| ident = Ident::from_str(&fixed_name).with_span_pos(fixed_name_sp); |
| |
| let mut err = self.struct_span_err(fixed_name_sp, error_msg); |
| err.span_label(fixed_name_sp, "dash-separated idents are not valid"); |
| err.multipart_suggestion( |
| suggestion_msg, |
| replacement, |
| Applicability::MachineApplicable, |
| ); |
| err.emit(); |
| } |
| Ok(ident) |
| } |
| |
| /// Parses `extern crate` links. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// extern crate foo; |
| /// extern crate bar as foo; |
| /// ``` |
| fn parse_item_extern_crate(&mut self, |
| lo: Span, |
| visibility: Visibility, |
| attrs: Vec<Attribute>) |
| -> PResult<'a, P<Item>> { |
| // Accept `extern crate name-like-this` for better diagnostics |
| let orig_name = self.parse_crate_name_with_dashes()?; |
| let (item_name, orig_name) = if let Some(rename) = self.parse_rename()? { |
| (rename, Some(orig_name.name)) |
| } else { |
| (orig_name, None) |
| }; |
| self.expect(&token::Semi)?; |
| |
| let span = lo.to(self.prev_span); |
| Ok(self.mk_item(span, item_name, ItemKind::ExternCrate(orig_name), visibility, attrs)) |
| } |
| |
| /// Parses `extern` for foreign ABIs modules. |
| /// |
| /// `extern` is expected to have been |
| /// consumed before calling this method. |
| /// |
| /// # Examples |
| /// |
| /// ```ignore (only-for-syntax-highlight) |
| /// extern "C" {} |
| /// extern {} |
| /// ``` |
| fn parse_item_foreign_mod(&mut self, |
| lo: Span, |
| opt_abi: Option<Abi>, |
| visibility: Visibility, |
| mut attrs: Vec<Attribute>) |
| -> PResult<'a, P<Item>> { |
| self.expect(&token::OpenDelim(token::Brace))?; |
| |
| let abi = opt_abi.unwrap_or(Abi::C); |
| |
| attrs.extend(self.parse_inner_attributes()?); |
| |
| let mut foreign_items = vec![]; |
| while !self.eat(&token::CloseDelim(token::Brace)) { |
| foreign_items.push(self.parse_foreign_item()?); |
| } |
| |
| let prev_span = self.prev_span; |
| let m = ast::ForeignMod { |
| abi, |
| items: foreign_items |
| }; |
| let invalid = keywords::Invalid.ident(); |
| Ok(self.mk_item(lo.to(prev_span), invalid, ItemKind::ForeignMod(m), visibility, attrs)) |
| } |
| |
| /// Parses `type Foo = Bar;` |
| /// or |
| /// `existential type Foo: Bar;` |
| /// or |
| /// `return `None`` |
| /// without modifying the parser state. |
| fn eat_type(&mut self) -> Option<PResult<'a, (Ident, AliasKind, ast::Generics)>> { |
| // This parses the grammar: |
| // Ident ["<"...">"] ["where" ...] ("=" | ":") Ty ";" |
| if self.check_keyword(keywords::Type) || |
| self.check_keyword(keywords::Existential) && |
| self.look_ahead(1, |t| t.is_keyword(keywords::Type)) { |
| let existential = self.eat_keyword(keywords::Existential); |
| assert!(self.eat_keyword(keywords::Type)); |
| Some(self.parse_existential_or_alias(existential)) |
| } else { |
| None |
| } |
| } |
| |
| /// Parses a type alias or existential type. |
| fn parse_existential_or_alias( |
| &mut self, |
| existential: bool, |
| ) -> PResult<'a, (Ident, AliasKind, ast::Generics)> { |
| let ident = self.parse_ident()?; |
| let mut tps = self.parse_generics()?; |
| tps.where_clause = self.parse_where_clause()?; |
| let alias = if existential { |
| self.expect(&token::Colon)?; |
| let bounds = self.parse_generic_bounds(None)?; |
| AliasKind::Existential(bounds) |
| } else { |
| self.expect(&token::Eq)?; |
| let ty = self.parse_ty()?; |
| AliasKind::Weak(ty) |
| }; |
| self.expect(&token::Semi)?; |
| Ok((ident, alias, tps)) |
| } |
| |
| /// Parses the part of an enum declaration following the `{`. |
| fn parse_enum_def(&mut self, _generics: &ast::Generics) -> PResult<'a, EnumDef> { |
| let mut variants = Vec::new(); |
| let mut all_nullary = true; |
| let mut any_disr = vec![]; |
| while self.token != token::CloseDelim(token::Brace) { |
| let variant_attrs = self.parse_outer_attributes()?; |
| let vlo = self.span; |
| |
| let struct_def; |
| let mut disr_expr = None; |
| let ident = self.parse_ident()?; |
| if self.check(&token::OpenDelim(token::Brace)) { |
| // Parse a struct variant. |
| all_nullary = false; |
| struct_def = VariantData::Struct(self.parse_record_struct_body()?, |
| ast::DUMMY_NODE_ID); |
| } else if self.check(&token::OpenDelim(token::Paren)) { |
| all_nullary = false; |
| struct_def = VariantData::Tuple(self.parse_tuple_struct_body()?, |
| ast::DUMMY_NODE_ID); |
| } else if self.eat(&token::Eq) { |
| disr_expr = Some(AnonConst { |
| id: ast::DUMMY_NODE_ID, |
| value: self.parse_expr()?, |
| }); |
| if let Some(sp) = disr_expr.as_ref().map(|c| c.value.span) { |
| any_disr.push(sp); |
| } |
| struct_def = VariantData::Unit(ast::DUMMY_NODE_ID); |
| } else { |
| struct_def = VariantData::Unit(ast::DUMMY_NODE_ID); |
| } |
| |
| let vr = ast::Variant_ { |
| ident, |
| attrs: variant_attrs, |
| data: struct_def, |
| disr_expr, |
| }; |
| variants.push(respan(vlo.to(self.prev_span), vr)); |
| |
| if !self.eat(&token::Comma) { break; } |
| } |
| self.expect(&token::CloseDelim(token::Brace))?; |
| if !any_disr.is_empty() && !all_nullary { |
| let mut err =self.struct_span_err( |
| any_disr.clone(), |
| "discriminator values can only be used with a field-less enum", |
| ); |
| for sp in any_disr { |
| err.span_label(sp, "only valid in field-less enums"); |
| } |
| err.emit(); |
| } |
| |
| Ok(ast::EnumDef { variants }) |
| } |
| |
| /// Parses an enum declaration. |
| fn parse_item_enum(&mut self) -> PResult<'a, ItemInfo> { |
| let id = self.parse_ident()?; |
| let mut generics = self.parse_generics()?; |
| generics.where_clause = self.parse_where_clause()?; |
| self.expect(&token::OpenDelim(token::Brace))?; |
| |
| let enum_definition = self.parse_enum_def(&generics).map_err(|e| { |
| self.recover_stmt(); |
| self.eat(&token::CloseDelim(token::Brace)); |
| e |
| })?; |
| Ok((id, ItemKind::Enum(enum_definition, generics), None)) |
| } |
| |
| /// Parses a string as an ABI spec on an extern type or module. Consumes |
| /// the `extern` keyword, if one is found. |
| fn parse_opt_abi(&mut self) -> PResult<'a, Option<Abi>> { |
| match self.token { |
| token::Literal(token::Str_(s), suf) | token::Literal(token::StrRaw(s, _), suf) => { |
| let sp = self.span; |
| self.expect_no_suffix(sp, "ABI spec", suf); |
| self.bump(); |
| match abi::lookup(&s.as_str()) { |
| Some(abi) => Ok(Some(abi)), |
| None => { |
| let prev_span = self.prev_span; |
| let mut err = struct_span_err!( |
| self.sess.span_diagnostic, |
| prev_span, |
| E0703, |
| "invalid ABI: found `{}`", |
| s); |
| err.span_label(prev_span, "invalid ABI"); |
| err.help(&format!("valid ABIs: {}", abi::all_names().join(", "))); |
| err.emit(); |
| Ok(None) |
| } |
| } |
| } |
| |
| _ => Ok(None), |
| } |
| } |
| |
| fn is_static_global(&mut self) -> bool { |
| if self.check_keyword(keywords::Static) { |
| // Check if this could be a closure |
| !self.look_ahead(1, |token| { |
| if token.is_keyword(keywords::Move) { |
| return true; |
| } |
| match *token { |
| token::BinOp(token::Or) | token::OrOr => true, |
| _ => false, |
| } |
| }) |
| } else { |
| false |
| } |
| } |
| |
| fn parse_item_( |
| &mut self, |
| attrs: Vec<Attribute>, |
| macros_allowed: bool, |
| attributes_allowed: bool, |
| ) -> PResult<'a, Option<P<Item>>> { |
| let (ret, tokens) = self.collect_tokens(|this| { |
| this.parse_item_implementation(attrs, macros_allowed, attributes_allowed) |
| })?; |
| |
| // Once we've parsed an item and recorded the tokens we got while |
| // parsing we may want to store `tokens` into the item we're about to |
| // return. Note, though, that we specifically didn't capture tokens |
| // related to outer attributes. The `tokens` field here may later be |
| // used with procedural macros to convert this item back into a token |
| // stream, but during expansion we may be removing attributes as we go |
| // along. |
| // |
| // If we've got inner attributes then the `tokens` we've got above holds |
| // these inner attributes. If an inner attribute is expanded we won't |
| // actually remove it from the token stream, so we'll just keep yielding |
| // it (bad!). To work around this case for now we just avoid recording |
| // `tokens` if we detect any inner attributes. This should help keep |
| // expansion correct, but we should fix this bug one day! |
| Ok(ret.map(|item| { |
| item.map(|mut i| { |
| if !i.attrs.iter().any(|attr| attr.style == AttrStyle::Inner) { |
| i.tokens = Some(tokens); |
| } |
| i |
| }) |
| })) |
| } |
| |
| /// Parses one of the items allowed by the flags. |
| fn parse_item_implementation( |
| &mut self, |
| attrs: Vec<Attribute>, |
| macros_allowed: bool, |
| attributes_allowed: bool, |
| ) -> PResult<'a, Option<P<Item>>> { |
| maybe_whole!(self, NtItem, |item| { |
| let mut item = item.into_inner(); |
| let mut attrs = attrs; |
| mem::swap(&mut item.attrs, &mut attrs); |
| item.attrs.extend(attrs); |
| Some(P(item)) |
| }); |
| |
| let lo = self.span; |
| |
| let visibility = self.parse_visibility(false)?; |
| |
| if self.eat_keyword(keywords::Use) { |
| // USE ITEM |
| let item_ = ItemKind::Use(P(self.parse_use_tree()?)); |
| self.expect(&token::Semi)?; |
| |
| let span = lo.to(self.prev_span); |
| let item = self.mk_item(span, keywords::Invalid.ident(), item_, visibility, attrs); |
| return Ok(Some(item)); |
| } |
| |
| if self.eat_keyword(keywords::Extern) { |
| if self.eat_keyword(keywords::Crate) { |
| return Ok(Some(self.parse_item_extern_crate(lo, visibility, attrs)?)); |
| } |
| |
| let opt_abi = self.parse_opt_abi()?; |
| |
| if self.eat_keyword(keywords::Fn) { |
| // EXTERN FUNCTION ITEM |
| let fn_span = self.prev_span; |
| let abi = opt_abi.unwrap_or(Abi::C); |
| let (ident, item_, extra_attrs) = |
| self.parse_item_fn(Unsafety::Normal, |
| IsAsync::NotAsync, |
| respan(fn_span, Constness::NotConst), |
| abi)?; |
| let prev_span = self.prev_span; |
| let item = self.mk_item(lo.to(prev_span), |
| ident, |
| item_, |
| visibility, |
| maybe_append(attrs, extra_attrs)); |
| return Ok(Some(item)); |
| } else if self.check(&token::OpenDelim(token::Brace)) { |
| return Ok(Some(self.parse_item_foreign_mod(lo, opt_abi, visibility, attrs)?)); |
| } |
| |
| self.unexpected()?; |
| } |
| |
| if self.is_static_global() { |
| self.bump(); |
| // STATIC ITEM |
| let m = if self.eat_keyword(keywords::Mut) { |
| Mutability::Mutable |
| } else { |
| Mutability::Immutable |
| }; |
| let (ident, item_, extra_attrs) = self.parse_item_const(Some(m))?; |
| let prev_span = self.prev_span; |
| let item = self.mk_item(lo.to(prev_span), |
| ident, |
| item_, |
| visibility, |
| maybe_append(attrs, extra_attrs)); |
| return Ok(Some(item)); |
| } |
| if self.eat_keyword(keywords::Const) { |
| let const_span = self.prev_span; |
| if self.check_keyword(keywords::Fn) |
| || (self.check_keyword(keywords::Unsafe) |
| && self.look_ahead(1, |t| t.is_keyword(keywords::Fn))) { |
| // CONST FUNCTION ITEM |
| let unsafety = self.parse_unsafety(); |
| self.bump(); |
| let (ident, item_, extra_attrs) = |
| self.parse_item_fn(unsafety, |
| IsAsync::NotAsync, |
| respan(const_span, Constness::Const), |
| Abi::Rust)?; |
| let prev_span = self.prev_span; |
| let item = self.mk_item(lo.to(prev_span), |
| ident, |
| item_, |
| visibility, |
| maybe_append(attrs, extra_attrs)); |
| return Ok(Some(item)); |
| } |
| |
| // CONST ITEM |
| if self.eat_keyword(keywords::Mut) { |
| let prev_span = self.prev_span; |
| let mut err = self.diagnostic() |
| .struct_span_err(prev_span, "const globals cannot be mutable"); |
| err.span_label(prev_span, "cannot be mutable"); |
| err.span_suggestion( |
| const_span, |
| "you might want to declare a static instead", |
| "static".to_owned(), |
| Applicability::MaybeIncorrect, |
| ); |
| err.emit(); |
| } |
| let (ident, item_, extra_attrs) = self.parse_item_const(None)?; |
| let prev_span = self.prev_span; |
| let item = self.mk_item(lo.to(prev_span), |
| ident, |
| item_, |
| visibility, |
| maybe_append(attrs, extra_attrs)); |
| return Ok(Some(item)); |
| } |
| |
| // `unsafe async fn` or `async fn` |
| if ( |
| self.check_keyword(keywords::Unsafe) && |
| self.look_ahead(1, |t| t.is_keyword(keywords::Async)) |
| ) || ( |
| self.check_keyword(keywords::Async) && |
| self.look_ahead(1, |t| t.is_keyword(keywords::Fn)) |
| ) |
| { |
| // ASYNC FUNCTION ITEM |
| let unsafety = self.parse_unsafety(); |
| self.expect_keyword(keywords::Async)?; |
| self.expect_keyword(keywords::Fn)?; |
| let fn_span = self.prev_span; |
| let (ident, item_, extra_attrs) = |
| self.parse_item_fn(unsafety, |
| IsAsync::Async { |
| closure_id: ast::DUMMY_NODE_ID, |
| return_impl_trait_id: ast::DUMMY_NODE_ID, |
| }, |
| respan(fn_span, Constness::NotConst), |
| Abi::Rust)?; |
| let prev_span = self.prev_span; |
| let item = self.mk_item(lo.to(prev_span), |
| ident, |
| item_, |
| visibility, |
| maybe_append(attrs, extra_attrs)); |
| return Ok(Some(item)); |
| } |
| if self.check_keyword(keywords::Unsafe) && |
| (self.look_ahead(1, |t| t.is_keyword(keywords::Trait)) || |
| self.look_ahead(1, |t| t.is_keyword(keywords::Auto))) |
| { |
| // UNSAFE TRAIT ITEM |
| self.bump(); // `unsafe` |
| let is_auto = if self.eat_keyword(keywords::Trait) { |
| IsAuto::No |
| } else { |
| self.expect_keyword(keywords::Auto)?; |
| self.expect_keyword(keywords::Trait)?; |
| IsAuto::Yes |
| }; |
| let (ident, item_, extra_attrs) = |
| self.parse_item_trait(is_auto, Unsafety::Unsafe)?; |
| let prev_span = self.prev_span; |
| let item = self.mk_item(lo.to(prev_span), |
| ident, |
| item_, |
| visibility, |
| maybe_append(attrs, extra_attrs)); |
| return Ok(Some(item)); |
| } |
| if self.check_keyword(keywords::Impl) || |
| self.check_keyword(keywords::Unsafe) && |
| self.look_ahead(1, |t| t.is_keyword(keywords::Impl)) || |
| self.check_keyword(keywords::Default) && |
| self.look_ahead(1, |t| t.is_keyword(keywords::Impl)) || |
| self.check_keyword(keywords::Default) && |
| self.look_ahead(1, |t| t.is_keyword(keywords::Unsafe)) { |
| // IMPL ITEM |
| let defaultness = self.parse_defaultness(); |
| let unsafety = self.parse_unsafety(); |
| self.expect_keyword(keywords::Impl)?; |
| let (ident, item, extra_attrs) = self.parse_item_impl(unsafety, defaultness)?; |
| let span = lo.to(self.prev_span); |
| return Ok(Some(self.mk_item(span, ident, item, visibility, |
| maybe_append(attrs, extra_attrs)))); |
| } |
| if self.check_keyword(keywords::Fn) { |
| // FUNCTION ITEM |
| self.bump(); |
| let fn_span = self.prev_span; |
| let (ident, item_, extra_attrs) = |
| self.parse_item_fn(Unsafety::Normal, |
| IsAsync::NotAsync, |
| respan(fn_span, Constness::NotConst), |
| Abi::Rust)?; |
| let prev_span = self.prev_span; |
| let item = self.mk_item(lo.to(prev_span), |
| ident, |
| item_, |
| visibility, |
| maybe_append(attrs, extra_attrs)); |
| return Ok(Some(item)); |
| } |
| if self.check_keyword(keywords::Unsafe) |
| && self.look_ahead(1, |t| *t != token::OpenDelim(token::Brace)) { |
| // UNSAFE FUNCTION ITEM |
| self.bump(); // `unsafe` |
| // `{` is also expected after `unsafe`, in case of error, include it in the diagnostic |
| self.check(&token::OpenDelim(token::Brace)); |
| let abi = if self.eat_keyword(keywords::Extern) { |
| self.parse_opt_abi()?.unwrap_or(Abi::C) |
| } else { |
| Abi::Rust |
| }; |
| self.expect_keyword(keywords::Fn)?; |
| let fn_span = self.prev_span; |
| let (ident, item_, extra_attrs) = |
| self.parse_item_fn(Unsafety::Unsafe, |
| IsAsync::NotAsync, |
| respan(fn_span, Constness::NotConst), |
| abi)?; |
| let prev_span = self.prev_span; |
| let item = self.mk_item(lo.to(prev_span), |
| ident, |
| item_, |
| visibility, |
| maybe_append(attrs, extra_attrs)); |
| return Ok(Some(item)); |
| } |
| if self.eat_keyword(keywords::Mod) { |
| // MODULE ITEM |
| let (ident, item_, extra_attrs) = |
| self.parse_item_mod(&attrs[..])?; |
| let prev_span = self.prev_span; |
| let item = self.mk_item(lo.to(prev_span), |
| ident, |
| item_, |
| visibility, |
| maybe_append(attrs, extra_attrs)); |
| return Ok(Some(item)); |
| } |
| if let Some(type_) = self.eat_type() { |
| let (ident, alias, generics) = type_?; |
| // TYPE ITEM |
| let item_ = match alias { |
| AliasKind::Weak(ty) => ItemKind::Ty(ty, generics), |
| AliasKind::Existential(bounds) => ItemKind::Existential(bounds, generics), |
| }; |
| let prev_span = self.prev_span; |
| let item = self.mk_item(lo.to(prev_span), |
| ident, |
| item_, |
| visibility, |
| attrs); |
| return Ok(Some(item)); |
| } |
| if self.eat_keyword(keywords::Enum) { |
| // ENUM ITEM |
| let (ident, item_, extra_attrs) = self.parse_item_enum()?; |
| let prev_span = self.prev_span; |
| let item = self.mk_item(lo.to(prev_span), |
| ident, |
| item_, |
| visibility, |
| maybe_append(attrs, extra_attrs)); |
| return Ok(Some(item)); |
| } |
| if self.check_keyword(keywords::Trait) |
| || (self.check_keyword(keywords::Auto) |
| && self.look_ahead(1, |t| t.is_keyword(keywords::Trait))) |
| { |
| let is_auto = if self.eat_keyword(keywords::Trait) { |
| IsAuto::No |
| } else { |
| self.expect_keyword(keywords::Auto)?; |
| self.expect_keyword(keywords::Trait)?; |
| IsAuto::Yes |
| }; |
| // TRAIT ITEM |
| let (ident, item_, extra_attrs) = |
| self.parse_item_trait(is_auto, Unsafety::Normal)?; |
| let prev_span = self.prev_span; |
| let item = self.mk_item(lo.to(prev_span), |
| ident, |
| item_, |
| visibility, |
| maybe_append(attrs, extra_attrs)); |
| return Ok(Some(item)); |
| } |
| if self.eat_keyword(keywords::Struct) { |
| // STRUCT ITEM |
| let (ident, item_, extra_attrs) = self.parse_item_struct()?; |
| let prev_span = self.prev_span; |
| let item = self.mk_item(lo.to(prev_span), |
| ident, |
| item_, |
| visibility, |
| maybe_append(attrs, extra_attrs)); |
| return Ok(Some(item)); |
| } |
| if self.is_union_item() { |
| // UNION ITEM |
| self.bump(); |
| let (ident, item_, extra_attrs) = self.parse_item_union()?; |
| let prev_span = self.prev_span; |
| let item = self.mk_item(lo.to(prev_span), |
| ident, |
| item_, |
| visibility, |
| maybe_append(attrs, extra_attrs)); |
| return Ok(Some(item)); |
| } |
| if let Some(macro_def) = self.eat_macro_def(&attrs, &visibility, lo)? { |
| return Ok(Some(macro_def)); |
| } |
| |
| // Verify whether we have encountered a struct or method definition where the user forgot to |
| // add the `struct` or `fn` keyword after writing `pub`: `pub S {}` |
| if visibility.node.is_pub() && |
| self.check_ident() && |
| self.look_ahead(1, |t| *t != token::Not) |
| { |
| // Space between `pub` keyword and the identifier |
| // |
| // pub S {} |
| // ^^^ `sp` points here |
| let sp = self.prev_span.between(self.span); |
| let full_sp = self.prev_span.to(self.span); |
| let ident_sp = self.span; |
| if self.look_ahead(1, |t| *t == token::OpenDelim(token::Brace)) { |
| // possible public struct definition where `struct` was forgotten |
| let ident = self.parse_ident().unwrap(); |
| let msg = format!("add `struct` here to parse `{}` as a public struct", |
| ident); |
| let mut err = self.diagnostic() |
| .struct_span_err(sp, "missing `struct` for struct definition"); |
| err.span_suggestion_short( |
| sp, &msg, " struct ".into(), Applicability::MaybeIncorrect // speculative |
| ); |
| return Err(err); |
| } else if self.look_ahead(1, |t| *t == token::OpenDelim(token::Paren)) { |
| let ident = self.parse_ident().unwrap(); |
| self.bump(); // `(` |
| let kw_name = if let Ok(Some(_)) = self.parse_self_arg() { |
| "method" |
| } else { |
| "function" |
| }; |
| self.consume_block(token::Paren); |
| let (kw, kw_name, ambiguous) = if self.check(&token::RArrow) { |
| self.eat_to_tokens(&[&token::OpenDelim(token::Brace)]); |
| self.bump(); // `{` |
| ("fn", kw_name, false) |
| } else if self.check(&token::OpenDelim(token::Brace)) { |
| self.bump(); // `{` |
| ("fn", kw_name, false) |
| } else if self.check(&token::Colon) { |
| let kw = "struct"; |
| (kw, kw, false) |
| } else { |
| ("fn` or `struct", "function or struct", true) |
| }; |
| self.consume_block(token::Brace); |
| |
| let msg = format!("missing `{}` for {} definition", kw, kw_name); |
| let mut err = self.diagnostic().struct_span_err(sp, &msg); |
| if !ambiguous { |
| let suggestion = format!("add `{}` here to parse `{}` as a public {}", |
| kw, |
| ident, |
| kw_name); |
| err.span_suggestion_short( |
| sp, &suggestion, format!(" {} ", kw), Applicability::MachineApplicable |
| ); |
| } else { |
| if let Ok(snippet) = self.sess.source_map().span_to_snippet(ident_sp) { |
| err.span_suggestion( |
| full_sp, |
| "if you meant to call a macro, try", |
| format!("{}!", snippet), |
| // this is the `ambiguous` conditional branch |
| Applicability::MaybeIncorrect |
| ); |
| } else { |
| err.help("if you meant to call a macro, remove the `pub` \ |
| and add a trailing `!` after the identifier"); |
| } |
| } |
| return Err(err); |
| } else if self.look_ahead(1, |t| *t == token::Lt) { |
| let ident = self.parse_ident().unwrap(); |
| self.eat_to_tokens(&[&token::Gt]); |
| self.bump(); // `>` |
| let (kw, kw_name, ambiguous) = if self.eat(&token::OpenDelim(token::Paren)) { |
| if let Ok(Some(_)) = self.parse_self_arg() { |
| ("fn", "method", false) |
| } else { |
| ("fn", "function", false) |
| } |
| } else if self.check(&token::OpenDelim(token::Brace)) { |
| ("struct", "struct", false) |
| } else { |
| ("fn` or `struct", "function or struct", true) |
| }; |
| let msg = format!("missing `{}` for {} definition", kw, kw_name); |
| let mut err = self.diagnostic().struct_span_err(sp, &msg); |
| if !ambiguous { |
| err.span_suggestion_short( |
| sp, |
| &format!("add `{}` here to parse `{}` as a public {}", kw, ident, kw_name), |
| format!(" {} ", kw), |
| Applicability::MachineApplicable, |
| ); |
| } |
| return Err(err); |
| } |
| } |
| self.parse_macro_use_or_failure(attrs, macros_allowed, attributes_allowed, lo, visibility) |
| } |
| |
| /// Parses a foreign item. |
| crate fn parse_foreign_item(&mut self) -> PResult<'a, ForeignItem> { |
| maybe_whole!(self, NtForeignItem, |ni| ni); |
| |
| let attrs = self.parse_outer_attributes()?; |
| let lo = self.span; |
| let visibility = self.parse_visibility(false)?; |
| |
| // FOREIGN STATIC ITEM |
| // Treat `const` as `static` for error recovery, but don't add it to expected tokens. |
| if self.check_keyword(keywords::Static) || self.token.is_keyword(keywords::Const) { |
| if self.token.is_keyword(keywords::Const) { |
| self.diagnostic() |
| .struct_span_err(self.span, "extern items cannot be `const`") |
| .span_suggestion( |
| self.span, |
| "try using a static value", |
| "static".to_owned(), |
| Applicability::MachineApplicable |
| ).emit(); |
| } |
| self.bump(); // `static` or `const` |
| return Ok(self.parse_item_foreign_static(visibility, lo, attrs)?); |
| } |
| // FOREIGN FUNCTION ITEM |
| if self.check_keyword(keywords::Fn) { |
| return Ok(self.parse_item_foreign_fn(visibility, lo, attrs)?); |
| } |
| // FOREIGN TYPE ITEM |
| if self.check_keyword(keywords::Type) { |
| return Ok(self.parse_item_foreign_type(visibility, lo, attrs)?); |
| } |
| |
| match self.parse_assoc_macro_invoc("extern", Some(&visibility), &mut false)? { |
| Some(mac) => { |
| Ok( |
| ForeignItem { |
| ident: keywords::Invalid.ident(), |
| span: lo.to(self.prev_span), |
| id: ast::DUMMY_NODE_ID, |
| attrs, |
| vis: visibility, |
| node: ForeignItemKind::Macro(mac), |
| } |
| ) |
| } |
| None => { |
| if !attrs.is_empty() { |
| self.expected_item_err(&attrs)?; |
| } |
| |
| self.unexpected() |
| } |
| } |
| } |
| |
| /// This is the fall-through for parsing items. |
| fn parse_macro_use_or_failure( |
| &mut self, |
| attrs: Vec<Attribute> , |
| macros_allowed: bool, |
| attributes_allowed: bool, |
| lo: Span, |
| visibility: Visibility |
| ) -> PResult<'a, Option<P<Item>>> { |
| if macros_allowed && self.token.is_path_start() { |
| // MACRO INVOCATION ITEM |
| |
| let prev_span = self.prev_span; |
| self.complain_if_pub_macro(&visibility.node, prev_span); |
| |
| let mac_lo = self.span; |
| |
| // item macro. |
| let pth = self.parse_path(PathStyle::Mod)?; |
| self.expect(&token::Not)?; |
| |
| // a 'special' identifier (like what `macro_rules!` uses) |
| // is optional. We should eventually unify invoc syntax |
| // and remove this. |
| let id = if self.token.is_ident() { |
| self.parse_ident()? |
| } else { |
| keywords::Invalid.ident() // no special identifier |
| }; |
| // eat a matched-delimiter token tree: |
| let (delim, tts) = self.expect_delimited_token_tree()?; |
| if delim != MacDelimiter::Brace { |
| if !self.eat(&token::Semi) { |
| self.span_err(self.prev_span, |
| "macros that expand to items must either \ |
| be surrounded with braces or followed by \ |
| a semicolon"); |
| } |
| } |
| |
| let hi = self.prev_span; |
| let mac = respan(mac_lo.to(hi), Mac_ { path: pth, tts, delim }); |
| let item = self.mk_item(lo.to(hi), id, ItemKind::Mac(mac), visibility, attrs); |
| return Ok(Some(item)); |
| } |
| |
| // FAILURE TO PARSE ITEM |
| match visibility.node { |
| VisibilityKind::Inherited => {} |
| _ => { |
| return Err(self.span_fatal(self.prev_span, "unmatched visibility `pub`")); |
| } |
| } |
| |
| if !attributes_allowed && !attrs.is_empty() { |
| self.expected_item_err(&attrs)?; |
| } |
| Ok(None) |
| } |
| |
| /// Parses a macro invocation inside a `trait`, `impl` or `extern` block. |
| fn parse_assoc_macro_invoc(&mut self, item_kind: &str, vis: Option<&Visibility>, |
| at_end: &mut bool) -> PResult<'a, Option<Mac>> |
| { |
| if self.token.is_path_start() { |
| let prev_span = self.prev_span; |
| let lo = self.span; |
| let pth = self.parse_path(PathStyle::Mod)?; |
| |
| if pth.segments.len() == 1 { |
| if !self.eat(&token::Not) { |
| return Err(self.missing_assoc_item_kind_err(item_kind, prev_span)); |
| } |
| } else { |
| self.expect(&token::Not)?; |
| } |
| |
| if let Some(vis) = vis { |
| self.complain_if_pub_macro(&vis.node, prev_span); |
| } |
| |
| *at_end = true; |
| |
| // eat a matched-delimiter token tree: |
| let (delim, tts) = self.expect_delimited_token_tree()?; |
| if delim != MacDelimiter::Brace { |
| self.expect(&token::Semi)?; |
| } |
| |
| Ok(Some(respan(lo.to(self.prev_span), Mac_ { path: pth, tts, delim }))) |
| } else { |
| Ok(None) |
| } |
| } |
| |
| fn collect_tokens<F, R>(&mut self, f: F) -> PResult<'a, (R, TokenStream)> |
| where F: FnOnce(&mut Self) -> PResult<'a, R> |
| { |
| // Record all tokens we parse when parsing this item. |
| let mut tokens = Vec::new(); |
| let prev_collecting = match self.token_cursor.frame.last_token { |
| LastToken::Collecting(ref mut list) => { |
| Some(mem::replace(list, Vec::new())) |
| } |
| LastToken::Was(ref mut last) => { |
| tokens.extend(last.take()); |
| None |
| } |
| }; |
| self.token_cursor.frame.last_token = LastToken::Collecting(tokens); |
| let prev = self.token_cursor.stack.len(); |
| let ret = f(self); |
| let last_token = if self.token_cursor.stack.len() == prev { |
| &mut self.token_cursor.frame.last_token |
| } else { |
| &mut self.token_cursor.stack[prev].last_token |
| }; |
| |
| // Pull out the tokens that we've collected from the call to `f` above. |
| let mut collected_tokens = match *last_token { |
| LastToken::Collecting(ref mut v) => mem::replace(v, Vec::new()), |
| LastToken::Was(_) => panic!("our vector went away?"), |
| }; |
| |
| // If we're not at EOF our current token wasn't actually consumed by |
| // `f`, but it'll still be in our list that we pulled out. In that case |
| // put it back. |
| let extra_token = if self.token != token::Eof { |
| collected_tokens.pop() |
| } else { |
| None |
| }; |
| |
| // If we were previously collecting tokens, then this was a recursive |
| // call. In that case we need to record all the tokens we collected in |
| // our parent list as well. To do that we push a clone of our stream |
| // onto the previous list. |
| match prev_collecting { |
| Some(mut list) => { |
| list.extend(collected_tokens.iter().cloned()); |
| list.extend(extra_token); |
| *last_token = LastToken::Collecting(list); |
| } |
| None => { |
| *last_token = LastToken::Was(extra_token); |
| } |
| } |
| |
| Ok((ret?, TokenStream::new(collected_tokens))) |
| } |
| |
| pub fn parse_item(&mut self) -> PResult<'a, Option<P<Item>>> { |
| let attrs = self.parse_outer_attributes()?; |
| self.parse_item_(attrs, true, false) |
| } |
| |
| /// `::{` or `::*` |
| fn is_import_coupler(&mut self) -> bool { |
| self.check(&token::ModSep) && |
| self.look_ahead(1, |t| *t == token::OpenDelim(token::Brace) || |
| *t == token::BinOp(token::Star)) |
| } |
| |
| /// Parses a `UseTree`. |
| /// |
| /// ``` |
| /// USE_TREE = [`::`] `*` | |
| /// [`::`] `{` USE_TREE_LIST `}` | |
| /// PATH `::` `*` | |
| /// PATH `::` `{` USE_TREE_LIST `}` | |
| /// PATH [`as` IDENT] |
| /// ``` |
| fn parse_use_tree(&mut self) -> PResult<'a, UseTree> { |
| let lo = self.span; |
| |
| let mut prefix = ast::Path { segments: Vec::new(), span: lo.shrink_to_lo() }; |
| let kind = if self.check(&token::OpenDelim(token::Brace)) || |
| self.check(&token::BinOp(token::Star)) || |
| self.is_import_coupler() { |
| // `use *;` or `use ::*;` or `use {...};` or `use ::{...};` |
| let mod_sep_ctxt = self.span.ctxt(); |
| if self.eat(&token::ModSep) { |
| prefix.segments.push( |
| PathSegment::path_root(lo.shrink_to_lo().with_ctxt(mod_sep_ctxt)) |
| ); |
| } |
| |
| if self.eat(&token::BinOp(token::Star)) { |
| UseTreeKind::Glob |
| } else { |
| UseTreeKind::Nested(self.parse_use_tree_list()?) |
| } |
| } else { |
| // `use path::*;` or `use path::{...};` or `use path;` or `use path as bar;` |
| prefix = self.parse_path(PathStyle::Mod)?; |
| |
| if self.eat(&token::ModSep) { |
| if self.eat(&token::BinOp(token::Star)) { |
| UseTreeKind::Glob |
| } else { |
| UseTreeKind::Nested(self.parse_use_tree_list()?) |
| } |
| } else { |
| UseTreeKind::Simple(self.parse_rename()?, ast::DUMMY_NODE_ID, ast::DUMMY_NODE_ID) |
| } |
| }; |
| |
| Ok(UseTree { prefix, kind, span: lo.to(self.prev_span) }) |
| } |
| |
| /// Parses a `UseTreeKind::Nested(list)`. |
| /// |
| /// ``` |
| /// USE_TREE_LIST = Ø | (USE_TREE `,`)* USE_TREE [`,`] |
| /// ``` |
| fn parse_use_tree_list(&mut self) -> PResult<'a, Vec<(UseTree, ast::NodeId)>> { |
| self.parse_unspanned_seq(&token::OpenDelim(token::Brace), |
| &token::CloseDelim(token::Brace), |
| SeqSep::trailing_allowed(token::Comma), |this| { |
| Ok((this.parse_use_tree()?, ast::DUMMY_NODE_ID)) |
| }) |
| } |
| |
| fn parse_rename(&mut self) -> PResult<'a, Option<Ident>> { |
| if self.eat_keyword(keywords::As) { |
| self.parse_ident_or_underscore().map(Some) |
| } else { |
| Ok(None) |
| } |
| } |
| |
| /// Parses a source module as a crate. This is the main entry point for the parser. |
| pub fn parse_crate_mod(&mut self) -> PResult<'a, Crate> { |
| let lo = self.span; |
| let krate = Ok(ast::Crate { |
| attrs: self.parse_inner_attributes()?, |
| module: self.parse_mod_items(&token::Eof, lo)?, |
| span: lo.to(self.span), |
| }); |
| emit_unclosed_delims(&self.unclosed_delims, self.diagnostic()); |
| self.unclosed_delims.clear(); |
| krate |
| } |
| |
| pub fn parse_optional_str(&mut self) -> Option<(Symbol, ast::StrStyle, Option<ast::Name>)> { |
| let ret = match self.token { |
| token::Literal(token::Str_(s), suf) => (s, ast::StrStyle::Cooked, suf), |
| token::Literal(token::StrRaw(s, n), suf) => (s, ast::StrStyle::Raw(n), suf), |
| _ => return None |
| }; |
| self.bump(); |
| Some(ret) |
| } |
| |
| pub fn parse_str(&mut self) -> PResult<'a, (Symbol, StrStyle)> { |
| match self.parse_optional_str() { |
| Some((s, style, suf)) => { |
| let sp = self.prev_span; |
| self.expect_no_suffix(sp, "string literal", suf); |
| Ok((s, style)) |
| } |
| _ => { |
| let msg = "expected string literal"; |
| let mut err = self.fatal(msg); |
| err.span_label(self.span, msg); |
| Err(err) |
| } |
| } |
| } |
| } |
| |
| pub fn emit_unclosed_delims(unclosed_delims: &[UnmatchedBrace], handler: &errors::Handler) { |
| for unmatched in unclosed_delims { |
| let mut err = handler.struct_span_err(unmatched.found_span, &format!( |
| "incorrect close delimiter: `{}`", |
| pprust::token_to_string(&token::Token::CloseDelim(unmatched.found_delim)), |
| )); |
| err.span_label(unmatched.found_span, "incorrect close delimiter"); |
| if let Some(sp) = unmatched.candidate_span { |
| err.span_label(sp, "close delimiter possibly meant for this"); |
| } |
| if let Some(sp) = unmatched.unclosed_span { |
| err.span_label(sp, "un-closed delimiter"); |
| } |
| err.emit(); |
| } |
| } |